Equations in MathMl

New equations are added in Tex format

H= 0 F(λ)dλ

H= i F(λ)Δλ

Δλ= λ i+1 + λ i 2 λ i + λ i1 2 = λ i+1 λ i1 2

H i =ΔλF( λ i )

LSTM=150TUTC

EoT=9.87sin2B-7.53cosB-1.5sinB

α=90+φ-δ

Sunrise=12 1 15 0 cos 1 ( sinφsinδ cosφcosδ )

Sunset=12+ 1 15 0 cos 1 ( sinφsinδ cosφcosδ )

I D =1.353× 0.7 ( A M 0.678 )

AM= 1 cosθ

n i (T)=5.29× 10 19 (T/300) 2.54 exp( 6726/T )

E^ 

E 

dn dt = dp dt =0

1 q d J n dx =(UG)=0

dE dx = ρ ε = q ε ( N A + N D )

d J T d x = d ( J p + J n ) d x = d J p d x + d J n d x = q ( U p + G p ) + q ( U n + G n ) = q ( G n G p ) q ( U n U p )

φsunEG,,0,Tsun=2πh3c2EGE2expEkTsun-1dE

φ2EG,,μ,TEarth=2πh3c2EGE2expE-μkTEarth-1dE

I= I L I 0 exp[ q( V+I R S ) nkT ]

I= I L I 0 exp[ qV nkT ] V R SH

P MP ' V MP I MP V MP 2 R Sh = V MP I MP ( 1 V MP I MP 1 R SH   )= P MP ( 1 V OC I SC 1 R SH )

V 1 = V 2

I T = I 1 + I 2

J= J L J 01 { exp[ q( V+J R s ) kT ]1 } J 02 { exp[ q( V+J R s ) 2kT ]1 } V+J R s R shunt

J= J 01 { exp[ q( VJ R s ) kT ]1 }+ J 02 { exp[ q( VJ R s ) 2kT ]1 }+ VJ R s R shunt

J= J L J 01 exp[ q( V+J R s ) kT ] J 02 exp[ q( V+J R s ) 2kT ] V+J R s R shunt

J= J 01 exp[ q( VJ R s ) kT ]+ J 02 exp[ q( VJ R s ) 2kT ]+ VJ R s R shunt

πln2=4.532

ρ=πln2VIt=4.532VIt

E(eV)=1.24λ(μm)

I=ILI0exp[q(V+IRS)nkT]

Implied  V oc = kT q ln( Δn( Δn+ N A ) n i 2 )

r 1 = n 0 n 1 n 0 + n 1

r 2 = n 1 n 2 n 1 + n 2

r 3 = n 2 n 3 n 2 + n 3

θ 1 = 2π n 1 t 1 λ

θ 2 = 2π n 2 t 2 λ

R=| r 2 |= r 1 2 + r 2 2 + r 3 2 + r 1 2 r 2 2 r 3 2 +2 r 1 r 2 ( 1+ r 3 2 )cos2 θ 1 +2 r 2 r 3 ( 1+ r 1 2 )cos2 θ 2 +2 r 1 r 3 cos2( θ 1 + θ 2 )+2 r 1 r 2 2 r 3 cos2( θ 1 θ 2 ) 1+ r 1 2 r 2 2 + r 1 2 r 3 2 + r 2 2 r 3 2 +2 r 1 r 2 ( 1+ r 3 2 )cos2 θ 1 +2 r 2 r 3 ( 1+ r 1 2 )cos2θ+2 r 1 r 3 cos2( θ 1 + θ 2 )+2 r 1 r 2 2 r 3 cos2( θ 1 θ 2 )

x=b±b24ac2a

cos(θ+φ)=cos(θ)cos(φ)sin(θ)sin(φ)

F( λ )= 2πh c 2 λ 5 ( exp( hc kλT )1 )

I D =1.353× 0.7 ( A M 0.678 )

R= ( n 0 n Si n 0 + n Si ) 2

F( λ )=ΦE 1 Δλ  in SI units

F( λ )=Φ q 1.24 λ(μm) 1 Δλ(μm)

R=| r 2 |= r 1 2 + r 2 2 + r 3 2 + r 1 2 r 2 2 r 3 2 +2 r 1 r 2 ( 1+ r 3 2 )cos2 θ 1 +2 r 2 r 3 ( 1+ r 1 2 )cos2 θ 2 +2 r 1 r 3 cos2( θ 1 + θ 2 )+2 r 1 r 2 2 r 3 cos2( θ 1 θ 2 ) 1+ r 1 2 r 2 2 + r 1 2 r 3 2 + r 2 2 r 3 2 +2 r 1 r 2 ( 1+ r 3 2 )cos2 θ 1 +2 r 2 r 3 ( 1+ r 1 2 )cos2θ+2 r 1 r 3 cos2( θ 1 + θ 2 )+2 r 1 r 2 2 r 3 cos2( θ 1 θ 2 )

I= I L I 0 [ exp( qV nkT ) ]

Rb=ρlA=ρbWA

ρ=ρt

α= sin 1 [sinδsinφ+cosδcosφcos(HRA)]

ζ= 90 0 α

Sunrise=12 1 15 0 cos 1 ( sinφsinδ cosφcosδ ) TC 60

Sunset=12+ 1 15 0 cos 1 ( sinφsinδ cosφcosδ ) TC 60

Sunrise=12 1 15 0 cos 1 ( tanφtanδ ) TC 60

Sunset=12+ 1 15 0 cos 1 ( tanφtanδ ) TC 60

n0p0=ni2

1τbulk=1τband+1τAuger+1τSRH

L=Dτ

VOC=kTqlnNA+ΔnΔnni2

FF=VMPIMPVOCISC

J= JL-J01expqV+J RskT-1-J02expqV+J RsnkT-1-V+J RsRshunt

J= JL-J01expqV+J RskT-1-J02expqV+J RsnkT-1-V+J RsRshunt

R=sin2θ1-θ2sin2θ1+θ2

R=tan2θ1-θ2tan2θ1+θ2

RT=R+R2

n1sinθ1=n2sinθ2

θ2=sin-1n2n1sinθ1

I=ILI0[exp(qVnkT)-1]

dE dx = ρ ε = q ε (p(x)n(x) N A + N D + )

Jn=qμnnE+qDndndx ,   Jp=qμppE+qDpdpdx

dEdx=ρε

W= x p + x n = 2ε q V o ( 1 N A + 1 N D )

lnI=ln(I0)+qnkT

G=αN0e-αx

E=E0-RTnF×lnQ

Q=DdCcAaBb

θ1=sin-1η2η1

Li++e-Li

LiLi++e-

Cl+e-Cl-

2H+aq+2e-H2g

Zn2+aq+2e-Zns      E°=-0.76V

ZnsZn2+aq+2e-     E°=0.76V

Cu2+aq+2e-Cus     E°=0.34V

aA+bBcC+dD

                            ZnsValence charge     0Zn2+2+aq+2e-

                            Cu2+Valence charge     2+aq+2e-Cu0s

Cu2+aq+2e-+ZnsCus+Zn2+aq+2e-

Cu2+aq+ZnsCus+Zn2+aq

CapacityAh=n×F×1 hour3600 sec

Energy Capacity=Ah×Battery Voltage

PbO2+Pb+2H2SO4chargedischarge2PbSO4+2H2O

Pb+SO42-chargedischargePbSO4+2e-

PbO2+SO42-+4H++2e-chargedischargePbSO4+2H2O

Zns+2OH-ZnOH2+2e- aqMnO2s+H2O+2e-Mn2O3s+2OH-aq

AM=1cosθ

AM=1cosθ+0.5057296.07995-θ-1.6364

AM=1+sh2

ID=1.353·0.7AM0.678

ID=1.353·1-ah0.7AM0.678+ah

IG=1.1 · ID

Smodule=SincidentcosαsinβcosΨ-Θ+sinαcosβ

Smodule=SincidentcosΥ=SincidentS·N

Fλ=2πhc2λ5exphckλT-1

H=σT4

λρμm=2900T

E=hcλ

EeV=1.24λμm

H( W m 2 )=Φ× hc λ  using SI units H( W m 2 )=Φ×q 1.24 λ( μm )  for wavelength in μm H( W m 2 )=Φ×qE(eV) for energy in eV

d1=λ04η1

n1=n0n2

r 1 = n 0 n 1 n 0 + n 1

r 2 = n 1 n 2 n 1 + n 2

θ= 2π n 1 t 1 λ

R=| r 2 |= r 1 2 + r 2 2 +2 r 1 r 2 cos2θ 1+ r 1 2 r 2 2 +2 r 1 r 2 cos2θ

δ=-23.45°×cos360365×d+10

H0=Rsun2D2Hsun

B=360365d-81

α=90φ+δ

α=90+φδ

Amanecer=12 1 15 0 cos 1 ( sinφsinδ cosφcosδ )

Pds=12+ 1 15 0 cos 1 ( sinφsinδ cosφcosδ )

voc=qnkTVoc

FF=voc-lnvoc+0.72voc+1

SR(A/W)=QE·λ(nm) 1239.8

SR(A/W)=QE·λ(μm) 1.2398

I0=qADni2LND

RCH=VMPIMPVOCISC

δ=23.45°×sin360365×d+284

δ=23.45°×sin360365×d-81

σ=qμnn+μpp

I=IL-I0eVVt

Vt=nkTq

P=VIL-VI0eVVt

u=VI0

 u'=I0

v=eVVt

v'=1VteVVt

dPdV=IL-VI01VteVVt+I0eVVt

dPdV=0

VmpI01VteVmpVt-I0eVmpVt=IL

VmpVteVmpVt-eVmpVt=ILI0

eVmpVtVmpVt-1=ILI0

VmpVt+lnVmpVt-1=lnILI0

Vmp=VtlnILI0-lnVmpVt-1

Voc=VtlnILI0

Vmp=Voc-lnVmpVt-1

0=IL-I0expVVt1+VVt

ILI0=expVVt×VVt

Y=XeXX=W(Y). Using this relation the previous equatoin becomes:

VVt=WJLJ0

Vmp=VtWJLJ0

Vmp=VtWeJLJ0-1

J=JLJ0[exp(VVt)1]J = J_{L} - J_{0}\left\lbrack \exp\left( \frac{V}{V_{t}} \right) - 1 \right\rbrack

P=VJLVJ0[exp(VVt)1]

EG(T)=EG(0)αT2T+βE_{G}\left( T \right) = E_{G}\left( 0 \right) - \frac{\alpha T^{2}}{T + \beta}

EG(T)=EBaB[1+2(eΘT1)]E_{G}\left( T \right) = \ E_{B} - a_{B}\left\lbrack 1 + \frac{2}{\left( e^{\frac{\Theta}{T}} - 1 \right)} \right\rbrack

EG(T)=EG(0)+BT+CT2E_{G}\left( T \right) = E_{G}\left( 0 \right) + BT + CT^{2}

EG(T)=EB(0)αΘ2[1+(2TΘ)pp1]E_{G}\left( T \right) = \ E_{B}(0) - \frac{\alpha\Theta}{2}\left\lbrack \sqrt[p]{1 + \left( \frac{2T}{\Theta} \right)^{p}} - 1 \right\rbrack

EGAB=xEGB+EGA(1x)C(1x)xE_{G}^{\text{AB}} = \text{xE}_{G}^{B} + E_{G}^{A}\left( 1 - x \right) - C\left( 1 - x \right)x

EG,XAB=xEG,XB+EG,XA(1x)CX(1x)xE_{G,X}^{\text{AB}} = \text{xE}_{G,X}^{B} + E_{G,X}^{A}\left( 1 - x \right) - C_{X}\left( 1 - x \right)x

EG,LAB=xEG,LB+EG,LA(1x)CL(1x)xE_{G,L}^{\text{AB}} = \text{xE}_{G,L}^{B} + E_{G,L}^{A}\left( 1 - x \right) - C_{L}\left( 1 - x \right)x

EG,ΓAB=xEG,ΓB+EG,ΓA(1x)CΓ(1x)xE_{G,\Gamma}^{\text{AB}} = \text{xE}_{G,\Gamma}^{B} + E_{G,\Gamma}^{A}\left( 1 - x \right) - C_{\Gamma}\left( 1 - x \right)x

aAB=xaB+aA(1x)C(1x)xa_{}^{\text{AB}} = \text{xa}_{}^{B} + a_{}^{A}\left( 1 - x \right) - C\left( 1 - x \right)x

CBOAB=χAχB\text{CBO}_{\text{AB}} = \chi_{A} - \chi_{B}

me,DOS*=MC23(ml*mt*mt*)13m_{e,\ \text{DOS}}^{*} = \ M_{C}^{\frac{2}{3}}\left( {m_{l}^{*}m_{t}^{*}m}_{t}^{*} \right)^{\frac{1}{3}}

me,cond*=3(1ml*+1mt*+1mt*)m_{e,\ \text{cond}}^{*} = \ \frac{3}{\left( \frac{1}{m_{l}^{*}} + \frac{1}{m_{t}^{*}} + \frac{1}{m_{t}^{*}} \right)}

mh,DOS*=[mhh*32+mlh*32+(mso*eΔkT)32]23m_{h,\ \text{DOS}}^{*} = \ \left\lbrack {m_{\text{hh}}^{*}}^{\frac{3}{2}} + {m_{\text{lh}}^{*}}^{\frac{3}{2}} + \left( m_{\text{so}}^{*}e^{\frac{- \mathrm{\Delta}}{\text{kT}}} \right)^{\frac{3}{2}} \right\rbrack^{\frac{2}{3}}

mh,cond*=3(1mhh*+1mlh*+1mso*)m_{h,\ \text{cond}}^{*} = \ \frac{3}{\left( \frac{1}{m_{\text{hh}}^{*}} + \frac{1}{m_{\text{lh}}^{*}} + \frac{1}{m_{\text{so}}^{*}} \right)}

NV=2(2πmh*kBTh2)32N_{V} = 2\left( \frac{2\pi m_{h}^{*}k_{B}T}{h^{2}} \right)^{\frac{3}{2}}

NC=2(2πme*kBTh2)32N_{C} = 2\left( \frac{2\pi m_{e}^{*}k_{B}T}{h^{2}} \right)^{\frac{3}{2}}

ni2=NCNVeEGkTn_{i}^{2} = N_{C}N_{V}e^{\frac{- E_{G}}{\text{kT}}}

ni=9.15×1010(T300)2e0.5928kTn_{i} = 9.15 \times 10^{10}\left( \frac{T}{300} \right)^{2}e^{\frac{- 0.5928}{\text{kT}}}

vd=μEv_{d} = \text{μE}

μ=qτ¯m*\mu = \ \frac{q\overline{\tau}}{m^{*}}

μ=μmin+μmaxμmin1+(NNr)α\mu = \mu_{\min} + \frac{\mu_{\max} - \mu_{\min}}{1 + \left( \frac{N}{N_{r}} \right)^{\alpha}}

1τeff=1τAuger+1τradiative+1τSRH+1τSurf\frac{1}{\tau_{\text{eff}}} = \frac{1}{\tau_{\text{Auger}}} + \frac{1}{\tau_{\text{radiative}}} + \frac{1}{\tau_{\text{SRH}}} + \frac{1}{\tau_{\text{Surf}}}

Urad=BnpU_{\text{rad}} = Bnp

UΔnτU \equiv \frac{\mathrm{\Delta}n}{\tau_{}}

Urad=B(npni2)U_{\text{rad}} = B\left( np - n_{i}^{2} \right)

UradΔnτRad=B(npni2)U_{\text{rad}} \equiv \frac{\mathrm{\Delta}n}{\tau_{\text{Rad}}} = B\left( np - n_{i}^{2} \right)

τRad=1B((n0+p0)+Δn)\tau_{\text{Rad}} = \frac{1}{B\left( \left( n_{0} + p_{0} \right) + \ \Delta n \right)}

τRad=1BND\tau_{\text{Rad}} = \frac{1}{BN_{D}^{}}\

τRad=1BNA\tau_{\text{Rad}} = \frac{1}{BN_{A}^{}}

UAuger=Cnn(npni2)+Cpp(npni2)U_{\text{Auger}} = C_{n}n\left( \text{np} - n_{i}^{2} \right) + C_{p}p\left( \text{np} - n_{i}^{2} \right)

UAugerCnn2p+Cpp2nU_{\text{Auger}} \cong C_{n}n^{2}p + C_{p}p^{2}n

nUAugerΔnτAuger\backslash nU_{\text{Auger}} \equiv \frac{\mathrm{\Delta}n}{\tau_{\text{Auger}}}

τAuger=1Cp(n02+2n0Δn+Δn2)+Cn(p02+2p0Δn+Δn2)\tau_{\text{Auger}} = \frac{1}{C_{p}\left( {n_{0}^{2} + 2n}_{0}\Delta n + {\Delta n}^{2} \right) + C_{n}\left( {p_{0}^{2} + 2p}_{0}\Delta n + {\Delta n}^{2} \right)}

τAuger=1CpND2\tau_{\text{Auger}} = \frac{1}{C_{p}N_{D}^{2}}

τAuger=1CnNA2\tau_{\text{Auger}} = \frac{1}{C_{n}N_{A}^{2}}

ΔnτRad=B((n0+Δn)(p0+Δn)ni2)\frac{\mathrm{\Delta}n}{\tau_{\text{Rad}}} = B\left( \left( n_{0} + \Delta n \right)\left( p_{0} + \Delta n \right) - n_{i}^{2} \right)

ΔnτRad=B(n0p0+Δn(n0+p0)+Δn2ni2)\frac{\mathrm{\Delta}n}{\tau_{\text{Rad}}} = B\left( n_{0}p_{0} + \Delta n\left( n_{0} + p_{0} \right) + \ \Delta n2 - n_{i}^{2} \right)

ΔnτRad=B(Δn(n0+p0)+Δn2)\frac{\mathrm{\Delta}n}{\tau_{\text{Rad}}} = B\left( \Delta n\left( n_{0} + p_{0} \right) + \ \Delta n2 \right)