New equations are added in Tex format H= ∫ 0 ∞ F(λ)dλ H= ∑ i F(λ)Δλ Δλ= λ i+1 + λ i 2 − λ i + λ i−1 2 = λ i+1 − λ i−1 2 H i =Δλ⋅F( λ i ) LSTM=150∆TUTC EoT=9.87sin2B-7.53cosB-1.5sinB α=90+φ-δ Sunrise=12− 1 15 0 cos −1 ( −sinφsinδ cosφcosδ ) Sunset=12+ 1 15 0 cos −1 ( −sinφsinδ cosφcosδ ) I D =1.353× 0.7 ( A M 0.678 ) AM= 1 cosθ n i (T)=5.29× 10 19 (T/300) 2.54 exp( −6726/T ) E^ E→ dn dt = dp dt =0 1 q d J n dx =(U−G)=0 dE dx = ρ ε = q ε (− N A + N D ) d J T d x = d ( J p + J n ) d x = d J p d x + d J n d x = − q ( U p + G p ) + q ( U n + G n ) = q ( G n − G p ) − q ( U n − U p ) φsunEG,∞,0,Tsun=2πh3c2∫EG∞E2expEkTsun-1dE φ2EG,∞,μ,TEarth=2πh3c2∫EG∞E2expE-μkTEarth-1dE I= I L − I 0 exp[ q( V+I R S ) nkT ] I= I L − I 0 exp[ qV nkT ]− V R SH P MP ' ≈ V MP I MP − V MP 2 R Sh = V MP I MP ( 1− V MP I MP 1 R SH )= P MP ( 1− V OC I SC 1 R SH ) V 1 = V 2 I T = I 1 + I 2 J= J L − J 01 { exp[ q( V+J R s ) kT ]−1 }− J 02 { exp[ q( V+J R s ) 2kT ]−1 }− V+J R s R shunt J= J 01 { exp[ q( V−J R s ) kT ]−1 }+ J 02 { exp[ q( V−J R s ) 2kT ]−1 }+ V−J R s R shunt J= J L − J 01 exp[ q( V+J R s ) kT ]− J 02 exp[ q( V+J R s ) 2kT ]− V+J R s R shunt J= J 01 exp[ q( V−J R s ) kT ]+ J 02 exp[ q( V−J R s ) 2kT ]+ V−J R s R shunt πln2=4.532 ρ=πln2VIt=4.532VIt E(eV)=1.24λ(μm) I=IL−I0exp[q(V+IRS)nkT] Implied V oc = kT q ln( Δn( Δn+ N A ) n i 2 ) r 1 = n 0 − n 1 n 0 + n 1 r 2 = n 1 − n 2 n 1 + n 2 r 3 = n 2 − n 3 n 2 + n 3 θ 1 = 2π n 1 t 1 λ θ 2 = 2π n 2 t 2 λ R=| r 2 |= r 1 2 + r 2 2 + r 3 2 + r 1 2 r 2 2 r 3 2 +2 r 1 r 2 ( 1+ r 3 2 )cos2 θ 1 +2 r 2 r 3 ( 1+ r 1 2 )cos2 θ 2 +2 r 1 r 3 cos2( θ 1 + θ 2 )+2 r 1 r 2 2 r 3 cos2( θ 1 − θ 2 ) 1+ r 1 2 r 2 2 + r 1 2 r 3 2 + r 2 2 r 3 2 +2 r 1 r 2 ( 1+ r 3 2 )cos2 θ 1 +2 r 2 r 3 ( 1+ r 1 2 )cos2θ+2 r 1 r 3 cos2( θ 1 + θ 2 )+2 r 1 r 2 2 r 3 cos2( θ 1 − θ 2 ) x=−b±b2−4ac2a cos(θ+φ)=cos(θ)cos(φ)−sin(θ)sin(φ) F( λ )= 2πh c 2 λ 5 ( exp( hc kλT )−1 ) I D =1.353× 0.7 ( A M 0.678 ) R= ( n 0 − n Si n 0 + n Si ) 2 F( λ )=ΦE 1 Δλ in SI units F( λ )=Φ q 1.24 λ(μm) 1 Δλ(μm) R=| r 2 |= r 1 2 + r 2 2 + r 3 2 + r 1 2 r 2 2 r 3 2 +2 r 1 r 2 ( 1+ r 3 2 )cos2 θ 1 +2 r 2 r 3 ( 1+ r 1 2 )cos2 θ 2 +2 r 1 r 3 cos2( θ 1 + θ 2 )+2 r 1 r 2 2 r 3 cos2( θ 1 − θ 2 ) 1+ r 1 2 r 2 2 + r 1 2 r 3 2 + r 2 2 r 3 2 +2 r 1 r 2 ( 1+ r 3 2 )cos2 θ 1 +2 r 2 r 3 ( 1+ r 1 2 )cos2θ+2 r 1 r 3 cos2( θ 1 + θ 2 )+2 r 1 r 2 2 r 3 cos2( θ 1 − θ 2 ) I= I L − I 0 [ exp( qV nkT ) ] Rb=ρlA=ρbWA ρ□=ρt α= sin −1 [sinδsinφ+cosδcosφcos(HRA)] ζ= 90 0 −α Sunrise=12− 1 15 0 cos −1 ( −sinφsinδ cosφcosδ )− TC 60 Sunset=12+ 1 15 0 cos −1 ( −sinφsinδ cosφcosδ )− TC 60 Sunrise=12− 1 15 0 cos −1 ( −tanφtanδ )− TC 60 Sunset=12+ 1 15 0 cos −1 ( −tanφtanδ )− TC 60 n0p0=ni2 1τbulk=1τband+1τAuger+1τSRH L=Dτ VOC=kTqlnNA+ΔnΔnni2 FF=VMPIMPVOCISC J= JL-J01expqV+J RskT-1-J02expqV+J RsnkT-1-V+J RsRshunt J= JL-J01expqV+J RskT-1-J02expqV+J RsnkT-1-V+J RsRshunt R⊥=sin2θ1-θ2sin2θ1+θ2 R∥=tan2θ1-θ2tan2θ1+θ2 RT=R⊥+R∥2 n1sinθ1=n2sinθ2 θ2=sin-1n2n1sinθ1 I=IL−I0[exp(qVnkT)-1] dE dx = ρ ε = q ε (p(x)−n(x)− N A − + N D + ) Jn=qμnnE+qDndndx , Jp=qμppE+qDpdpdx dEdx=ρε W= x p + x n = 2ε q V o ( 1 N A + 1 N D ) lnI=ln(I0)+qnkT G=αN0e-αx E=E0-RTnF×lnQ Q=DdCcAaBb θ1=sin-1η2η1 Li++e-→Li Li→Li++e- Cl+e-→Cl- 2H+aq+2e-→H2g Zn2+aq+2e-→Zns E°=-0.76V Zns→Zn2+aq+2e- E°=0.76V Cu2+aq+2e-→Cus E°=0.34V aA+bB→cC+dD ZnsValence charge 0→Zn2+2+aq+2e- Cu2+Valence charge 2+aq+2e-→Cu0s Cu2+aq+2e-+Zns→Cus+Zn2+aq+2e- Cu2+aq+Zns→Cus+Zn2+aq CapacityAh=n×F×1 hour3600 sec Energy Capacity=Ah×Battery Voltage PbO2+Pb+2H2SO4⇔chargedischarge2PbSO4+2H2O Pb+SO42-⇔chargedischargePbSO4+2e- PbO2+SO42-+4H++2e-⇔chargedischargePbSO4+2H2O Zns+2OH-→ZnOH2+2e- aqMnO2s+H2O+2e-→Mn2O3s+2OH-aq AM=1cosθ AM=1cosθ+0.5057296.07995-θ-1.6364 AM=1+sh2 ID=1.353·0.7AM0.678 ID=1.353·1-ah0.7AM0.678+ah IG=1.1 · ID Smodule=SincidentcosαsinβcosΨ-Θ+sinαcosβ Smodule=SincidentcosΥ=SincidentS·N Fλ=2πhc2λ5exphckλT-1 H=σT4 λρμm=2900T E=hcλ EeV=1.24λμm H( W m 2 )=Φ× hc λ using SI units H( W m 2 )=Φ×q 1.24 λ( μm ) for wavelength in μm H( W m 2 )=Φ×qE(eV) for energy in eV d1=λ04η1 n1=n0n2 r 1 = n 0 − n 1 n 0 + n 1 r 2 = n 1 − n 2 n 1 + n 2 θ= 2π n 1 t 1 λ R=| r 2 |= r 1 2 + r 2 2 +2 r 1 r 2 cos2θ 1+ r 1 2 r 2 2 +2 r 1 r 2 cos2θ δ=-23.45°×cos360365×d+10 H0=Rsun2D2Hsun B=360365d-81 α=90−φ+δ α=90+φ−δ Amanecer=12− 1 15 0 cos −1 ( −sinφsinδ cosφcosδ ) Pds=12+ 1 15 0 cos −1 ( −sinφsinδ cosφcosδ ) voc=qnkTVoc FF=voc-lnvoc+0.72voc+1 SR(A/W)=QE·λ(nm) 1239.8 SR(A/W)=QE·λ(μm) 1.2398 I0=qADni2LND RCH=VMPIMP≈VOCISC δ=23.45°×sin360365×d+284 δ=23.45°×sin360365×d-81 σ=qμnn+μpp I=IL-I0eVVt Vt=nkTq P=VIL-VI0eVVt u=VI0 u'=I0 v=eVVt v'=1VteVVt dPdV=IL-VI01VteVVt+I0eVVt dPdV=0 VmpI01VteVmpVt-I0eVmpVt=IL VmpVteVmpVt-eVmpVt=ILI0 eVmpVtVmpVt-1=ILI0 VmpVt+lnVmpVt-1=lnILI0 Vmp=VtlnILI0-lnVmpVt-1 Voc=VtlnILI0 Vmp=Voc-lnVmpVt-1 0=IL-I0expVVt1+VVt ILI0=expVVt×VVt Y=XeX⇔X=W(Y). Using this relation the previous equatoin becomes: VVt=WJLJ0 Vmp=VtWJLJ0 Vmp=VtWeJLJ0-1 J=JL−J0[exp(VVt)−1]J = J_{L} - J_{0}\left\lbrack \exp\left( \frac{V}{V_{t}} \right) - 1 \right\rbrack P=VJL−VJ0[exp(VVt)−1] EG(T)=EG(0)−αT2T+βE_{G}\left( T \right) = E_{G}\left( 0 \right) - \frac{\alpha T^{2}}{T + \beta} EG(T)=EB−aB[1+2(eΘT−1)]E_{G}\left( T \right) = \ E_{B} - a_{B}\left\lbrack 1 + \frac{2}{\left( e^{\frac{\Theta}{T}} - 1 \right)} \right\rbrack EG(T)=EG(0)+BT+CT2E_{G}\left( T \right) = E_{G}\left( 0 \right) + BT + CT^{2} EG(T)=EB(0)−αΘ2[1+(2TΘ)pp−1]E_{G}\left( T \right) = \ E_{B}(0) - \frac{\alpha\Theta}{2}\left\lbrack \sqrt[p]{1 + \left( \frac{2T}{\Theta} \right)^{p}} - 1 \right\rbrack EGAB=xEGB+EGA(1−x)−C(1−x)xE_{G}^{\text{AB}} = \text{xE}_{G}^{B} + E_{G}^{A}\left( 1 - x \right) - C\left( 1 - x \right)x EG,XAB=xEG,XB+EG,XA(1−x)−CX(1−x)xE_{G,X}^{\text{AB}} = \text{xE}_{G,X}^{B} + E_{G,X}^{A}\left( 1 - x \right) - C_{X}\left( 1 - x \right)x EG,LAB=xEG,LB+EG,LA(1−x)−CL(1−x)xE_{G,L}^{\text{AB}} = \text{xE}_{G,L}^{B} + E_{G,L}^{A}\left( 1 - x \right) - C_{L}\left( 1 - x \right)x EG,ΓAB=xEG,ΓB+EG,ΓA(1−x)−CΓ(1−x)xE_{G,\Gamma}^{\text{AB}} = \text{xE}_{G,\Gamma}^{B} + E_{G,\Gamma}^{A}\left( 1 - x \right) - C_{\Gamma}\left( 1 - x \right)x aAB=xaB+aA(1−x)−C(1−x)xa_{}^{\text{AB}} = \text{xa}_{}^{B} + a_{}^{A}\left( 1 - x \right) - C\left( 1 - x \right)x CBOAB=χA−χB\text{CBO}_{\text{AB}} = \chi_{A} - \chi_{B} me,DOS*=MC23(ml*mt*mt*)13m_{e,\ \text{DOS}}^{*} = \ M_{C}^{\frac{2}{3}}\left( {m_{l}^{*}m_{t}^{*}m}_{t}^{*} \right)^{\frac{1}{3}} me,cond*=3(1ml*+1mt*+1mt*)m_{e,\ \text{cond}}^{*} = \ \frac{3}{\left( \frac{1}{m_{l}^{*}} + \frac{1}{m_{t}^{*}} + \frac{1}{m_{t}^{*}} \right)} mh,DOS*=[mhh*32+mlh*32+(mso*e−ΔkT)32]23m_{h,\ \text{DOS}}^{*} = \ \left\lbrack {m_{\text{hh}}^{*}}^{\frac{3}{2}} + {m_{\text{lh}}^{*}}^{\frac{3}{2}} + \left( m_{\text{so}}^{*}e^{\frac{- \mathrm{\Delta}}{\text{kT}}} \right)^{\frac{3}{2}} \right\rbrack^{\frac{2}{3}} mh,cond*=3(1mhh*+1mlh*+1mso*)m_{h,\ \text{cond}}^{*} = \ \frac{3}{\left( \frac{1}{m_{\text{hh}}^{*}} + \frac{1}{m_{\text{lh}}^{*}} + \frac{1}{m_{\text{so}}^{*}} \right)} NV=2(2πmh*kBTh2)32N_{V} = 2\left( \frac{2\pi m_{h}^{*}k_{B}T}{h^{2}} \right)^{\frac{3}{2}} NC=2(2πme*kBTh2)32N_{C} = 2\left( \frac{2\pi m_{e}^{*}k_{B}T}{h^{2}} \right)^{\frac{3}{2}} ni2=NCNVe−EGkTn_{i}^{2} = N_{C}N_{V}e^{\frac{- E_{G}}{\text{kT}}} ni=9.15×1010(T300)2e−0.5928kTn_{i} = 9.15 \times 10^{10}\left( \frac{T}{300} \right)^{2}e^{\frac{- 0.5928}{\text{kT}}} vd=μEv_{d} = \text{μE} μ=qτ¯m*\mu = \ \frac{q\overline{\tau}}{m^{*}} μ=μmin+μmax−μmin1+(NNr)α\mu = \mu_{\min} + \frac{\mu_{\max} - \mu_{\min}}{1 + \left( \frac{N}{N_{r}} \right)^{\alpha}} 1τeff=1τAuger+1τradiative+1τSRH+1τSurf\frac{1}{\tau_{\text{eff}}} = \frac{1}{\tau_{\text{Auger}}} + \frac{1}{\tau_{\text{radiative}}} + \frac{1}{\tau_{\text{SRH}}} + \frac{1}{\tau_{\text{Surf}}} Urad=BnpU_{\text{rad}} = Bnp U≡ΔnτU \equiv \frac{\mathrm{\Delta}n}{\tau_{}} Urad=B(np−ni2)U_{\text{rad}} = B\left( np - n_{i}^{2} \right) Urad≡ΔnτRad=B(np−ni2)U_{\text{rad}} \equiv \frac{\mathrm{\Delta}n}{\tau_{\text{Rad}}} = B\left( np - n_{i}^{2} \right) τRad=1B((n0+p0)+Δn)\tau_{\text{Rad}} = \frac{1}{B\left( \left( n_{0} + p_{0} \right) + \ \Delta n \right)} τRad=1BND\tau_{\text{Rad}} = \frac{1}{BN_{D}^{}}\ τRad=1BNA\tau_{\text{Rad}} = \frac{1}{BN_{A}^{}} UAuger=Cnn(np−ni2)+Cpp(np−ni2)U_{\text{Auger}} = C_{n}n\left( \text{np} - n_{i}^{2} \right) + C_{p}p\left( \text{np} - n_{i}^{2} \right) UAuger≅Cnn2p+Cpp2nU_{\text{Auger}} \cong C_{n}n^{2}p + C_{p}p^{2}n ∖nUAuger≡ΔnτAuger\backslash nU_{\text{Auger}} \equiv \frac{\mathrm{\Delta}n}{\tau_{\text{Auger}}} τAuger=1Cp(n02+2n0Δn+Δn2)+Cn(p02+2p0Δn+Δn2)\tau_{\text{Auger}} = \frac{1}{C_{p}\left( {n_{0}^{2} + 2n}_{0}\Delta n + {\Delta n}^{2} \right) + C_{n}\left( {p_{0}^{2} + 2p}_{0}\Delta n + {\Delta n}^{2} \right)} τAuger=1CpND2\tau_{\text{Auger}} = \frac{1}{C_{p}N_{D}^{2}} τAuger=1CnNA2\tau_{\text{Auger}} = \frac{1}{C_{n}N_{A}^{2}} ΔnτRad=B((n0+Δn)(p0+Δn)−ni2)\frac{\mathrm{\Delta}n}{\tau_{\text{Rad}}} = B\left( \left( n_{0} + \Delta n \right)\left( p_{0} + \Delta n \right) - n_{i}^{2} \right) ΔnτRad=B(n0p0+Δn(n0+p0)+Δn2−ni2)\frac{\mathrm{\Delta}n}{\tau_{\text{Rad}}} = B\left( n_{0}p_{0} + \Delta n\left( n_{0} + p_{0} \right) + \ \Delta n2 - n_{i}^{2} \right) ΔnτRad=B(Δn(n0+p0)+Δn2)\frac{\mathrm{\Delta}n}{\tau_{\text{Rad}}} = B\left( \Delta n\left( n_{0} + p_{0} \right) + \ \Delta n2 \right)