### Overview

- When light is incident on a solar cell, carriers get generated at that surface, but not in the bulk of the solar cell. This creates a carrier concentration gradient within the semiconductor
- When a carrier concentration gradient exists in the semiconductor, through random motion, carriers will have a net movement from areas of high carrier concentration to areas of low concentration in the process of diffusion.
- With time, these carriers will diffuse throughout the cell until the concentration is uniform.

The constant random motion of carriers can lead to a net movement of carriers if one particular region has a higher concentration of carriers than another region (a concentration gradient between the high carrier-concentration region and the low carrier-concentration region). The net movement of carriers is therefore from areas of high concentration to low. **If we let random movement do it's thing, over time, the carriers will become evenly spread across the space through random motion alone.**

p>

The rate at which diffusion occurs depends on the velocity at which carriers move and on the distance between scattering events. It is termed diffusivity and measured in cm^{2}s^{-1}. Values for silicon, the most used semiconductor material for solar cells, are given in the appendix. Since raising the temperature will increase the thermal velocity of the carriers, diffusion occurs faster at higher temperatures. A single particle in a box will eventually be found at any random location in the box.

One major effect of diffusion is that, with time, it evens out the carrier concentrations in a device, such as those induced by generation and recombination, without an external force being applied to the device. This is shown in the animation below in which one region of the device has a high concentration of electrons and the other has a high concentration of holes. Due purely to the random movement of carriers, the two concentrations will become uniform throughout the material, over time.

### Diffusion Equation Derivation

It is known from the molecular physics that the flux of diffusing particles is proportional to the concentration gradient.

##### One-dimensional diffusion equations

for electrons (n) and holes (p) can be written as follows:

,

where:

*J _{n}* and

*J*= the diffusion current densities

_{p}*q* = electron charge

*D _{n}* and

*D*= diffusion coefficients for electrons and holes

_{p}*n* and *p* = electron and hole concentrations

##### Equation of diffusion for carriers in the bulk of semiconductor

With time (t1, t2, t3), an initial pulse of electrons will diffuse.

Rate of diffusion for electrons in semiconductors =

**Electron flux density = number of electrons passing x _{o} per unit time per unit area**

Consider small segments of width **l** to the left and right of x_{0} and approximate the electron concentrations n_{1} and n_{2} in these segments as uniform.

Therefore, the electron flux density from left to right =

The difference in electron concentration between the two points (n_{1} and n_{2}) needs to be written in terms that we understand. We can define both n_{1} and n_{2} using an excerpt of the above graph.

We assume **l** is very small, and therefore can use the slope at x_{o} in order to **determine the electron concentration (n) at x _{o} ± **

Substitute:

Simplify:

Cross out terms:

Combine terms:

Simplify:

Substitute back into original equation:

Combine** l** terms:

In order to approximate the electron concentration as x changes, assume that x is very small.

To do this, we take the limit as x → 0

Move constants in front of limit:

Take limit:

***this derivation can also be used for holes!**

Redefine the constants and equation for electrons:

**For ELECTRONS:**

D_{n} is the electron diffusion coefficient with units cm^{2}/s. The minus sign arises from the fact that the vector of the concentration gradient is directed toward the increase of the concentration, while the particles diffuse to the area with lower concentration.

##### Direction of the concentration gradient is opposite to the direction of the carrier motion with the result that the

##### formula for the carrier flux density should have a minus sign.

Now, redefine the constants and equation for holes:

Substitute:

**For HOLES:**

Diffusion current density = carrier flux density multiplied by carrier charge (denoted by q)

For Electrons:

Simplify:

For holes:

Overview:

### Continuity Equation

Continuity equations give the rate of carriers buildup in the bulk of semiconductor.

,

where *U* is carrier recombination rate, *G* - generation rate.

Consider the length *dx* of semiconductor and movement of holes through it. The net increase in hole concentration per unit time is the difference between the flux of holes entering and leaving the volume *AΔx* plus generation rate and minus recombination rate.

In the derivative form

,

Finally, plugging in the diffusion equations one can get

,

- Log in or register to post comments
- 2 comment(s)
- Español