基本信息
黄铁矿,正式名称为二硫化铁,是天然存在的最丰富的硫化物矿物。 它具有类似于萤石结构的晶体结构。二硫化铁具有黄色铜金属光泽,有时被错误地识别为金。由于这种错误的身份,它通常被称为“愚人金”。 1
由于撞击金属时会产生火花,黄铁矿被用作早期火器的点火源。黄铁矿还用于商业生产二氧化硫,二氧化硫用于造纸工业以及硫酸的制造。愚人金还应用于珠宝、无线电接收器中的矿物检测和光伏发电 1
晶体结构
Fractional Coordinates | Orthogonal Coordinates | |||||||
---|---|---|---|---|---|---|---|---|
Label | Elmt | x | y | z | xor[Å] | yor[Å] | zor[Å] | |
1. | Fe | 0.0000 | 0.0000 | 0.0000 | 0.000 | 0.000 | 0.000 | |
2. | Fe | 0.5000 | 0.0000 | 0.5000 | 2.862 | 0.058 | 2.544 | |
3. | Fe | 0.5000 | 0.5000 | 0.0000 | 2.646 | 2.765 | -0.157 | |
4. | Fe | 0.0000 | 0.5000 | 0.5000 | 0.102 | 2.709 | 2.705 | |
5. | Fe | 1.0000 | 0.0000 | 0.0000 | 5.405 | 0.114 | -0.318 | |
6. | Fe | 1.0000 | 0.5000 | 0.5000 | 5.507 | 2.823 | 2.387 | |
7. | Fe | 0.0000 | 1.0000 | 0.0000 | -0.114 | 5.415 | 0.004 | |
8. | Fe | 0.5000 | 1.0000 | 0.5000 | 2.748 | 5.473 | 2.548 | |
9. | Fe | 1.0000 | 1.0000 | 0.0000 | 5.291 | 5.529 | -0.314 | |
10. | Fe | 0.0000 | 0.0000 | 1.0000 | 0.318 | 0.003 | 5.407 | |
11. | Fe | 0.5000 | 0.5000 | 1.0000 | 2.964 | 2.767 | 5.250 | |
12. | Fe | 1.0000 | 0.0000 | 1.0000 | 5.723 | 0.117 | 5.089 | |
13. | Fe | 0.0000 | 1.0000 | 1.0000 | 0.204 | 5.417 | 5.411 | |
14. | Fe | 1.0000 | 1.0000 | 1.0000 | 5.609 | 5.532 | 5.093 | |
15. | S | 0.3849 | 0.3849 | 0.3849 | 2.159 | 2.129 | 1.960 | |
16. | S | 0.8849 | 0.3849 | 0.1151 | 4.776 | 2.185 | 0.343 | |
17. | S | 0.1151 | 0.8849 | 0.3849 | 0.644 | 4.806 | 2.048 | |
18. | S | 0.6151 | 0.8849 | 0.1151 | 3.261 | 4.862 | 0.430 | |
19. | S | 0.6151 | 0.6151 | 0.6151 | 3.450 | 3.403 | 3.133 | |
20. | S | 0.1151 | 0.6151 | 0.8849 | 0.833 | 3.346 | 4.750 | |
21. | S | 0.8849 | 0.1151 | 0.6151 | 4.966 | 0.726 | 3.045 | |
22. | S | 0.3849 | 0.1151 | 0.8849 | 2.349 | 0.670 | 4.662 |
使用 Cu Kα 单色源的理论衍射数据。
(m是多重数,N是最大弯曲次数)
ref no. | h | k | l | d(hkl) | 2-Theta | Intensity | I/Imax | m | N |
---|---|---|---|---|---|---|---|---|---|
[ 1] | 1 | 1 | 1 | 3.12693 | 28.5207 | 3.45405e-002 | 37.7 | 8 | 3 |
[ 2] | 0 | 0 | 2 | 2.70800 | 33.0502 | 8.38185e-002 | 91.5 | 6 | 4 |
[ 3] | 0 | 2 | 1 | 2.42211 | 37.0850 | 4.90083e-002 | 53.5 | 12 | 5 |
[ 4] | 1 | 1 | 2 | 2.21107 | 40.7741 | 4.07521e-002 | 44.5 | 24 | 6 |
[ 5] | 0 | 2 | 2 | 1.91485 | 47.4381 | 4.57922e-002 | 50.0 | 12 | 8 |
[ 6] | 1 | 2 | 2 | 1.80533 | 50.5106 | 5.56486e-004 | 0.6 | 24 | 9 |
[ 7] | 1 | 1 | 3 | 1.63299 | 56.2871 | 9.15808e-002 | 100.0 | 24 | 11 |
[ 8] | 2 | 2 | 2 | 1.56346 | 59.0306 | 1.45073e-002 | 15.8 | 8 | 12 |
[ 9] | 0 | 2 | 3 | 1.50213 | 61.6974 | 1.49215e-002 | 16.3 | 12 | 13 |
[10] | 1 | 2 | 3 | 1.44749 | 64.2989 | 2.01434e-002 | 22.0 | 48 | 14 |
[11] | 0 | 0 | 4 | 1.35400 | 69.3429 | 3.85639e-005 | 0.0 | 6 | 16 |
[12] | 0 | 4 | 1 | 1.31357 | 71.8008 | 6.67362e-004 | 0.7 | 36 | 17 |
[13] | 1 | 1 | 4 | 1.27656 | 74.2244 | 3.85281e-004 | 0.4 | 24 | 18 |
[14] | 1 | 3 | 3 | 1.24252 | 76.6194 | 9.79268e-003 | 10.7 | 24 | 19 |
[15] | 0 | 2 | 4 | 1.21105 | 78.9908 | 1.25237e-002 | 13.7 | 24 | 20 |
[16] | 1 | 2 | 4 | 1.18187 | 81.3432 | 8.38154e-003 | 9.2 | 48 | 21 |
[17] | 2 | 3 | 3 | 1.15470 | 83.6810 | 4.14859e-003 | 4.5 | 24 | 22 |
[18] | 2 | 2 | 4 | 1.10554 | 88.3290 | 1.21383e-002 | 13.3 | 24 | 24 |
[19] | 0 | 4 | 3 | 1.08320 | 90.6469 | 3.45885e-004 | 0.4 | 12 | 25 |
[20] | 1 | 3 | 4 | 1.06217 | 92.9660 | 5.11313e-004 | 0.6 | 48 | 26 |
[21] | 1 | 1 | 5 | 1.04231 | 95.2899 | 3.31754e-002 | 36.2 | 32 | 27 |
[22] | 0 | 2 | 5 | 1.00573 | 99.9680 | 1.10694e-002 | 12.1 | 60 | 29 |
光伏应用
黄铁矿用于光伏应用的主要方法是薄膜。它在太阳能光伏和光电化学电池中用作活性层显示出非常有前景的结果。黄铁矿具有合适的带隙(Eg = 0.95 eV)、有效光吸收(R > 105 cm-1,hν > 1.3 eV)、足够的少数载流子扩散长度(100-1000 nm),并且对于所有密集用途而言无限丰富的元素。原则上,仅在美国六个州,每年作为采矿废物处理的黄铁矿的 10%就 可以满足美国所有一次电力需求(~3.5 TW)(假设电池效率为 10%,且黄铁矿活性层保守为 5 μm 厚)。2
300 K 时的基本参数
Crystal structure: | Fluorite | 3 |
Group of symmetry: | Pa(-3) | 3 |
Number of atoms in 1 cm3: | 7.55*1022 | 3 |
Unit cell volume: | 158.8678 Å3 | 3 |
Atoms per unit cell: | 12 | 3 |
Auger recombination coefficient C: | 10-26 cm6 s-1 | 3 |
Debye temperature: | 6*106 K | 4 |
Density: | 5.0159 g/cm3 | 3 |
Dielectric constant: | ɛ=10.9 | 5 |
Effective electron density: | Nc = 3*1018 cm-3 | 5 |
Effective electron masses: | me* = 0.25me | 5 |
Effective hole density: | Nv = 3*1019 ± 5*1019 cm-3 | 5 |
Effective hole masses: | mh* = (2.2 ± 0.7) me | 5 |
Lattice constant: | 5.416 Å | 6 |
Optical phonon energy: | 1.048 ± 0.005 eV | 4 |
能带结构和载流子浓度
关于光生载流子的量作为黄铁矿基板和硅膜的厚度的函数的图可以在Pietro P.Altermatt等中找到。 5
多数载流子迁移率与天然和合成黄铁矿晶体以及黄铁矿薄膜的多数载流子密度的关系图可以在 Pietro P. Altermatt, Tobias Kiesewetter, Klaus Ellmer, Helmut Tributsch所著的《光伏器件未来研究的指定目标》中找到,其中包含通过数值模拟分析黄铁矿 (FeS2),太阳能材料和太阳能电池,Volume 71, Issue 2, 1 February 2002, Pages 181-195, ISSN 0927-0248, 10.1016/S0927-0248(01)00053-8.5
对于各种俄歇系数 C,过量载流子的寿命与多数载流子密度的关系图可以在Pietro P. Altermatt等中找到。 5
温度依赖性
作为温度函数的光学吸收边图可在 C de las Heras 等中找到4
施主和受主
施主: Ni, Co 1
受主: As 1
电气特性
Energy gap: | 0.95 eV | 6 |
Energy spin-orbital splitting: | 1.2 eV | 7 |
Intrinsic carrier concentration: | 2.78*1012 cm-3 | 5 |
Carrier mobility: | 120 cm2 V-1 s-1 | 4 |
Intrinsic resistivity: | 0.18 Ω·cm | 4 |
电性能基本参数
流动性和霍尔效应
Mobility parameters: | µmax = 300 cm2 / V s | 5 |
µmin = 0.02 cm2 / V s | 5 | |
cref = 6*1017 cm-3 | 5 | |
β = 1.3 | 5 |
光学特性
Refractive index | nref = 4.5 on average | 5 |
Absorption coefficient | 5*105 cm-1 (λ<750nm) | 5 |
光学特性
机械性能、弹性常数、晶格振动
基本参数
Bulk modulus: | 143 GPa | 6 |
Density: | 5.0159 g/cm3 | |
Hardness: | 6.3 on the Mohs scale | |
Surface microhardness (using Knoop's pyramid test): |
792 kg/mm2 @ 100 Gms load 577 kg/mm2 @ 300 Gms load |
|
Cleavage planes: | (1 1 0), (1 1 1), (0 0 1) |
弹性常数
C11 = 3.46-3.818 Mbars | |
C12 = -0.529-0.34 Mbars | |
C44 = 0.68-1.187 Mbars |
多晶薄膜拉曼光谱数据可参见 C de las Heras 等 4
主要由犹他大学本科生 Jeff Provost 和 Carina Hahn 与 Mike Scarpulla 教授合作开发。 Caitlin Arndt、Christian Robert、Katie Furse、Jash Sayani 和 Liz Lund 也做出了贡献。这项工作得到了美国国家科学基金会材料世界网络计划奖 1008302 的全力支持。这些页面是一项正在进行的工作,我们征求世界各地知识渊博的各方的意见,以获取更准确或更多的信息。请联系 [email protected] 提出此类建议。
- 1. a. b. c. d. “Electrochemical Impedance Spectroscopy of Synthetic Pyrite Doped with As, Co, and Ni”, Journal of The Electrochemical Society, vol. 155, no. 5, p. P61, 2008.
- 2. “Colloidal Iron Pyrite (FeS 2 ) Nanocrystal Inks for Thin-Film Photovoltaics”, Journal of the American Chemical Society, vol. 133, no. 4, pp. 716 - 719, 2011.
- 3. a. b. c. d. e. f. g. “Arsenic in iron disulfides in a brown coal from the North Bohemian Basin, Czech Republic”, International Journal of Coal Geology, vol. 71, no. 2-3, pp. 115 - 121, 2007.
- 4. a. b. c. d. e. f. “Temperature dependence of the optical absorption edge of pyrite FeS 2 thin films”, Journal of Physics: Condensed Matter, vol. 6, no. 46, pp. 10177 - 10183, 1994.
- 5. a. b. c. d. e. f. g. h. i. j. k. l. m. n. o. “Specifying targets of future research in photovoltaic devices containing pyrite (FeS2) by numerical modelling”, Solar Energy Materials and Solar Cells, vol. 71, no. 2, pp. 181 - 195, 2002.
- 6. a. b. c. “First-principles studies of the structural and electronic properties of pyrite”, Physical Review B, vol. 65, no. 5, 2002.
- 7. “Surfactant-Assisted Hydrothermal Synthesis of Single phase Pyrite FeS 2 Nanocrystals”, Chemistry of Materials, vol. 21, no. 13, pp. 2568 - 2570, 2009.