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Program Description

PC1D is a computer program written for IBM-compatible personal computers which solves the fully coupled nonlinear
equations for the quasi-one-dimensional transport of electrons and holes in crystalline semiconductor devices, with
emphasis on photovoltaic devices. This version of the program is supported and distributed by the Photovoltaics
Special Research Centre at the University of New South Wales in Sydney, Australia 2052. Only licensed copies of the
program are authorized for use. A licensed copy may be loaded and used on multiple computers or on a network
provided the licensee maintains records of the number and location of these authorized copies and can ensure that all
notifications and updates are distributed to everyone using these copies. Licensed copies are available from the PV
Centre for a fee of AUST$150, which may be paid by credit card or by cheque. Contact the PV Centre via e-mail at
pcld@unsw.edu.au to receive an order form via fax.

PCI1D runs under Windows 95/98/ME/XP/NT, and requires at least an 80386 CPU and an 80387 math coprocessor (note
that most 80486 and Pentium processors have the math coprocessor built-in). It will also run on Windows 3.1 if Win32s
is installed (Win32s 1.71 or later is required).

Only one file is necessary to run the program, PC1D.EXE. The additional file PC1D.HLP provides on-screen help, and
several additional files are provided which contain material parameters for selected semiconductors, standardized solar
spectra, and example problems. All of the files can be simply copied into the directory of choice; no setup programis
required. To store files of different type in different directories, see the instructions for the Options menu.

PCI1D will continue to be improved and your suggestions are appreciated. Submit them via e-mail at the address shown
above. Of particular interest are any computation errors that may arise, and improved values for material parameters as
they become available. Licensed users will receive update notices. Those who register an e-mail contact address will
be provided with maintenance updates of the program and its associated files via e-mail at no cost.
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Getting Started

Using PC1D is a three step process:

1. Set up the simulation parameters. This includes the device and material parameters, and the excitation to be applied
to the device.

2. Run the simulation.
3. Examine the results.
PCI1D has three different types of displays (called views), each useful for a different step of this process.

When setting up the simulation parameters, you will want to use the Parameter View. This gives a list of simulation
parameters, and a schematic diagram of the device being simulated, giving you visual feedback when parameters are
changed. This view also gives a shortcut: you can double-click on any line to bring up a dialog box allowing you
change that parameter. You can also double-click on elements of the diagram to change them.

While you run a simulation, you can switch to the Four-Graph View. This fills the screen with four graphs of
quantities that are commonly of interest (for example, the carrier velocities; generation and recombination; etc). You
can watch these quantities change as the program advances in the solution of the problem.

The Interactive Graph View is designed for intensive study of a particular graph. It allows you to zoom into regions of
the graph which interest you; examine the values of individual points; and copy the graph values to another Windows
program (e.g. a spreadsheet) for further analysis.

But, PCI1D is designed to flexible! You can switch between views at any time (even while a simulation is running).

If you are just using PC1D for Windows for the first time, you should take a look at the example parameter files
supplied with the program. Spend a little time getting used to the various views, and the methods of changing
parameters. A few common questions are answered below.

How do I change the parameters for a simulation?

Either:

e  Use the Display menu and Excitation menu; or

e Double-click on the parameters name in the Parameter view (This is the textual list of parameters which you see
when you first run PC1D); or

e Double-click on the device schematic to change device parameters. A dialog box will appear, allowing you to
specify values for the parameters which you are interested in.

Howdo I get PC1D to calculate the results? (How do I run a simulation?)
Either:

e  Use the Compute menu and select Run; or

e  Press the Run button in the toolbar.

In the old DOS versions of PC1D, the program displayed four graphs while it was calculating the results. Howcan I
make this happen in the Windows version?
Switch to Four Graphs view. You can do this from the View menu, or by pressing the FourGraphs button in the toolbar.

0 Howcan I examine the results of a simulation?

1 Switch to interactive graph view. You can do this using the Graph menu.

2 You can zoom into any region of the graph using a mouse or keyboard. Values from the graph can be copied to
the clipboard and imported into another program, e.g. a spreadsheet.

3 Or, if you are only interested in the values of Voc, Isc and Pmax, they are displayed in the parameter view under
the heading *** RESULTS ***
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Convergence and Convergence Failure

The equilibrium solution of the semiconductor equations is remarkably robust and will almost always converge. But
the extreme nonlinearity of the fully-coupled semiconductor device equations makes convergence to a non-equilibrium
solution difficult. Several measures have been taken within PC1D to assist convergence, but despite this you will
eventually generate problems that will not converge. This section offers some advice on how to avoid convergence
failure, and how to deal with it when it does occur.

Dynamic renoding

This feature was introduced in PC1D 4.2, and reduces the likelihood of non-convergence. The basic idea is that when
PCI1D detects that part of the device is not converging well, it increases the number of finite elements in the difficult
area. This helps to ensure that the assumptions which PC1D makes about the behaviour of solution variables remain
valid.

Dynamic renoding is particularly significant for problems involving reverse biased current sources.

In general, convergence failure occurs either because:

(a) the dynamic renoder ran out of nodes (currently, there is a limit of 500);

or (b) the solution is trying to reach a final state that is too far removed from the initial state;
or (c) the situation is unphysical and has no solution.

Situations which are known to interfere with convergence

The following situations should be avoided as they make convergence difficult:

1. Locating an electrical contact in a region that, in equilibrium, is either very lightly doped or depleted. If the region in
equilibriumis clearly of one type or the other, that type will be assumed to be the polarity of the contact, even if
subsequent excitation causes the carrier concentrations at that point to become inverted.

2. Connecting a shunt element between two dopant regions that are both isolated by a junction from an electrical
contact. This situation occurs in modeling series-connected multijunction devices. It is generally best to model these
devices instead as three-terminal devices, then infer the two-terminal behavior from the three-terminal results.

3. Appling a large forward voltage with no current-limiting resistor. The currents in the device can become huge in this
case, and numerical overflow can occur.

4. Low velocity saturation. This is a problem when carriers are trying to go faster than the velocity limit. This problem
can be avoided by setting the limit to zero (which disables velocity saturation), or by choosing fixed mobility rather
than variable. The problemis even more severe if total velocity saturation is specified for the numerical method.

Improving convergence by controlling the numerical method
The following actions can be taken to try to get the problemto converge without changing the definition of the
problem.

1. Change the element size factor in the Compute:Numerical dialog box.

By decreasing the element size factor, you increase the number of elements in the problem. Decreasing this value will
tend to improve convergence, until the maximum of 500 elements is reached. However, the problem will take longer to
solve. Sometimes, you will encounter situations where convergence can be improved by increasing the element size
factor.

2. Adjust the normalized potential clamp (also in the Compute:Numerical dialog box).

A smaller value (between 0.1 and 1) will sometimes improve convergence, although some problems benefit from larger
clamp values (5-10). It is particularly helpful to reduce this value when voltage, current or light are applied abruptly.
Small clamp values increase the time required to solve the problem, especially problems where large reverse-bias
voltages are applied.

3. Ensure that Psi and Phi clamping (in the Compute:Numerical dialog box) are not both disabled.

4. Turn off Total velocity saturation (in the Compute:Numerical dialog box) unless you need to include this effect (as
you might for some heterostructures where current is limited by velocity saturation in areas of sharp
carrier-concentration gradients).

5. On some occasions the difficulty simply may be that the problem converges very slowly. In this case, you should
increase the time limit in the Compute:Numerical dialog box.

Improving convergence by imposing excitation gradually

This is the most effective way of improving convergence. For example, to solve a silicon junction forward-biased to 0.8
volts, you may need to perform an interim solution at 0.6 volts first. You should solve the problem for steady-state at
0.6 volts, then change the bias to 0.8 volts and use Compute:Continue. This will solve for steady-state, using the
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interim solution as the starting point for the next solution.
Similarly, it may be necessary to increase the light intensity in steps, say 10 mW/cm2, 100 mW/cm2, then 1 W/cm2.

If you have a particular interest in understanding exactly why a particular problem did not converge, you can enable
Graphs after every iteration in the Compute:Numerical dialog, and create a user-defined graph of Convergence Error
(plotted on a log scale) versus Distance from front. This will show how far each element of the device is from
convergence.
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What’s new in Version 5.9?

(Release date: June 03).

Graphs of minority carrier lifetime and diffusion length should now work properly in equilibrium. In the past, these
graphs suffered froma loss of precision, making them jagged.

The short description of some batch parameters (related to doping) were changed in the QuickBatch dialog to improve
clarity.

What’s new in Version 5.8?

(Release date: Dec 02).

A bug in the velocity saturation code was fixed. This meant that the mobility reduction at high fields was being
overestimated by a factor of about two. This bug did not apply when 'total velocity saturation' was selected.

What’s new in Version 5.7?

(Release date: July 02).

One minor new feature has been added, which will only be of interest to programmers.

There is a new command-line option /g which allows PC1D to be run from an external program.

PC1D /g filename.prm opens the parameter file ‘filename.prm’ silently, runs the simulation, copies the contents of the
interactive graph to the clipboard, and then exits. Note that if the PRM file had a one-line batch file associated with it,
you could modify the batch file before running PC1D in order to change a model parameter.

Changes introduced in Version 5.6

(Release date: Sept 01).

Rear surface texturing now works. A bug in all previous versions was causing rear surface texturing to be applied at
the front instead of the rear.

A new graphable function, ‘Pri-Surface Total reflectance’ has been added, to make it easier to match experimental
reflectance data. The Quantum Efficiency graph now displays this total reflectance, instead of separate curves for front
reflectance and escape.

BUGFIX: The batch commands for bandgaps were nuddled up (Bandgap, AbsEd1, AbsEd2, AbsEil, AbsEi2).

Changes introduced in Version 5.5

(Release date: Aug 00).

An error in the diffusion length graph has been fixed, and the limitations on mobility have been relaxed, allowing
simulations of very low mobility cells. Some minor typographical errors in the numerical method section of the help file
have been corrected.

In rare circumstances, previous versions of PC1D 5 would crash when exiting. This problem has been fixed.

Changes introduced in Version 5.4

(Release date: June 00).

e  BUGFIX: Under certain circumstances, quantum efficiency calculations would not converge at long wavelengths.
(This was due to a compiler bug, and only occurred in PC1D 5.3). This problem has been fixed.

e  Graphs now look better when the PC1D window is only occupying part of your screen. The graphs remain
readable down to small window sizes.

e A ‘reflectance’ shortcut button has been added to the toolbar, as a convenient way of adjusting the device
reflectance.

No simulation results are affected by any of these changes.

New features introduced in Version 5.3 - Major batch enhancements

Internal Batch mode (‘QuickBatch’ button on toolbar)
A batch run can now be generated from inside PC1D, without having to use an external spreadsheet program. Just
specify which parameters you want to vary, and over what range, and PC1D will do the rest.

Graphs saved between simulations

PC1D now saves graphs from the last 100 sinulations. You can access them by pressing PageUp and PageDown in the
Interactive Graph View. This is especially useful for batch runs: if you run a batch where only one parameter is
varying, by pressing PgUp and PgDn, you can graphically see the effect of varying that parameter.

Increased speed (again!) — Now twice as fast as version 5.0 !

With the new models turned off, PC1D is now five times as fast as version 4.6, or seventeen times as fast as the old
DOS version (PC-1D 3.3). With the new models turned on, it is fourteen times faster than the DOS version.
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Parameter view displays more information

Values for recombination, applied circuit, light intensity, series resistance, etc are now displayed in the parameter
screen. This will help ensure that you are performing the simulation that you intended. It also uses subscripts and
superscripts to aid readability.

Slight convergence improvement
Some poorly-behaved problems will now converge, due to improved numerical precision in some of PC1D’s internal
functions.

Minor features

e Light intensity limit increased: Some characterisation techniques using laser pulses result in extremely high light
intensity. These situations can now be simulated.

e Ifyou stop a simulation, change the light sources, and continue the simulation, PC1D will now recalculate the
photogeneration before continuing.

e New graphable function, ‘IQE adjusted for light bias’, to easily obtain the quantum efficiency of a device which is
being illuminated by a secondary (constant) light source.

e New shortcut batch parameters (BulkTau, FrS, RrS, FrintRefl, RrIntRefl).

Changes introduced in Version 5.2

(Release date: Sept 98).

Bugfix - deleting batch files could cause PC1D to crash

Previous versions of PC1D didn’t check whether batch files had been deleted. PC1D would crash at the end of a
simulation if the batch file had been deleted. This problem has now been fixed.

Bugfix - batch files with many parameters didn’t always work
Version 5.1 didn’t always work properly for batch files with more than about 18 parameters. It will now work properly
with up to 30 parameters.

Better use of exponential notation

e Dialog boxes now use exponential notation for large values, instead of (cumbersome) fixed-point notation. For
example, 43000000000 is now displayed as 4.3e10. This is particularly helpful for parameters such as intrinsic
carrier concentration.

e  The range for which scientific notation (rather than fixed point) is used can be changed from a new Options dialog
boxin the Options menu. It will affect dialog boxes, as well as the parameter view.

Numerical method described in help files
The numerical method used by PC1D is now described in detail in the help files.

Changes introduced in Version 5.1

(Release date: Mar 98).

Parameter View font selection

e  The font to be used for the parameter view can now be selected (select Font in the Options menu). If you have a
large screen, you may want to select a smaller font.

Better batch files

e  There is now no intrinsic limit to the length of a batch file. Previously, batch files were limited to 100 lines. The
maximum number of lines now depends on the operating system you are using. In Windows 95, batch files are
limited to a few hundred lines (more if smaller font sizes are used in Parameter View). This limitation doesn’t apply
to Windows NT, and Microsoft will probably fix the problem for Windows 98.

e Batch files can now have 30 fields across (although only the first 12 will print on A4 paper, unless you select a
very small font size or copy the results into a spreadsheet program).

Increased speed (again!)
o Simulation speed is now three times as fast as PC1D 4.6, or eight times as fast as PC1D 3.6. On a 200Mhz Pentium,
an IV curve for a simple cell now takes slightly less than 1 second.

Non-convergent problems

e PCI1D is now much better at detecting non-convergent problems. If it detects a problem it can’t solve, it will stop
immediately. It won’t display bad numerics in graphs.

e The annoying 1 second delay when trying to stop a non-convergent problem has been dramatically reduced.

Minor bug fixes
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e Copying batch file data to clipboard would occasionally add a line of garbage at the end. This has been fixed.

e  The program was always disabling rear external photogeneration files when reloading. It now saves and loads
correctly.

e  The mouse didn’t work well with non-simple curves in interactive graphs. For example, if you were sweeping
voltage from +ve to -ve, it was not possible to select points with the mouse. Also, Voc, Isc and Pmax weren’t
always displayed. These problems have now been fixed.

Changes introduced in Version 5.0

Version 5 is the first 32-bit (Windows 95 / Windows NT) version of PC1D. It will also run on Windows 3.1 if Win32s is
installed (Win32s 1.71 or later is required). It was released on 8 Sept 97. The new features are:

Increased speed
e Simulation speed is now twice as fast!

Trap-assisted tunnelling
e  Trap-assisted tunnelling can now be modelled using the Hurkx model for field-enhanced recombination. Access it
through the Device:Material:Recombination dialog box.

Experimental data graphs
o External files of experimental data can be displayed simultaneously with simulation results. This makes it much
simpler to fit simulation parameters to experimental results.

Increased simulation domain
e  Extra batch parameters for shunt elements, contact positions, bandgap, and intrinsic concentration.
e Internal reflection can now be set to 100% (it was previously limited to 99%).

Better graphs

o  All graphs can now be user-defined. You can redefine any of the existing graphs by (a) using the Define command
in the Graph menu; or (b) double-clicking in the border area of any interactive graph.

e  The graphs you select in the Four-graphs view and Interactive graph view are now saved with the excitation and
parameter files. This is particularly helpful for IQE scans, etc, because it means you don’t have to redefine your
graphs every time you restart PC1D. It also saves your auxiliary and experimental data graphs.

e Ininteractive graph view, press CTRL+arrow keys to move the caret rapidly.

User interface enhancements

e Support for long filenames.

e  Minor features such as ToolTips for toolbar buttons.

e Tabbed dialog boxes! Many of the old dialog boxes were combined into tabbed dialogs, so the menu structure is
now much simpler and less daunting. This is a particularly big improvement for reflectance, and for light sources.

e  The parameter view no longer flickers while running a simulation. (This is one contributor to the increased speed).

Backwards compatibility

e Loads files created by any previous version of PC1D

e Option to save material, device, excitation and parameter files in a form that allows them to be read by PC1D 4.5 (Of
course, any new features will be lost when saved in the old version). This option appears in all of the “Save As”
dialog boxes.

Minor changes and bug fixes
e  The programnow gives correct results for rear illumination of a device made from more than one material.
o External files of absorption data are now interpolated logarithmically rather than linearly.

Changes introduced in Version 4.6

Version 4.6 was a very minor maintenance release, fixing an error which occured when ni was small, such as with large
bandgap materials at low temperature. In such cases, the program erroneously introduced a large resistance at the
contacts.

Changes introduced in Version 4.5

Version 4.5 was a minor maintenance release, fixing a few problems which were discovered after the release of 4.4:
e  The list of recently used files under the File menu now works properly.
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e  The programnow gives correct results when monochromatic light is used with zero intensity (such as happens
when simulating the transient response to a laser pulse).

e  The default values for free-carrier absorption in silicon now match the values recommended in the help file.

e A few more parameters can now be used in batch files: shunt elements, bandgap and intrinsic concentration.

e  The file locations “Problem Parameters” external file path was removed, as it was not used by the program. The
initial location for .PRM files should be set using the standard Windows “Properties” function (in Win 3.1, select
the icon and press SHIFT+Enter).

Changes introduced in Version 4.4

4.4 was a minor maintenance release (Release date: Dec 96).
The silicon material parameters were updated to be consistent.
Also, a few minor bugs were fixed. E.g. in the device schematic, diodes are now displayed the correct way around.

New features introduced in Version 4.3 - Device diagram, free-carrier

absorption, and total velocity saturation.

Version 4.3 was a major release (Release date: Oct 96).
In addition to minor bug fixes and improvements to the online help, the following new features were incorporated into
PC1D Version 4.3:

User interface enhancements

e A diagram of the device is now displayed in the Parameter View, providing visual feedback of doping, texturing,
and internal shunt elements. This makes it much easier to recognize mistakes when designing complex devices.
You can also double-click on parts of the diagram to change them, which gives another method for setting up
parameters.

e  The behaviour of the scroll bars has been improved.

Increased capacity
e The maximum number of timesteps has been increased to 200.

Physics

e  The majority-carrier mobility model for silicon has been revised to be more accurate in the vicinity of room
temperature. The model now agrees better with the 1981 data of Thurber et al.

e  The band-to-band recombination coefficient for silicon was corrected from 9.5E-14 to 9.5E-15 cm3/s.

e The ratio of Nc/Nv for silicon was changed from 2.8 to 1.06 to be consistent with the “new” lower value of
intrinsic carrier concentration of 1E10 cm-3 at 300K which is now in common use.

e  Free-carrier absorption can now be modelled. This improves the accuracy of simulations of heavily-doped
devices.

e  Velocity saturation can now be modelled accurately. Previous versions only limited carrier velocity due to a high
electric field. You can now limit the velocity due to both drift and diffusion. To do so, turn on Total velocity
saturation in the Compute:Numerical dialog box. Note, however, that invoking this feature will significantly slow
down your solution and is only recommended when this effect is important to your device. Normally, it will only
affect heterostructures where the current is limited by thermionic emission over an energy barrier.

New features introduced in Version 4.2

(Release date: Aug 96).

Improved convergence

e Dynamic renoding was introduced into the solution code. This improves convergence of many problems,
especially reverse bias and floating junctions.

e The internal equations were changed back to the old ones used in Version 3. It turns out that the old equations
have superior convergence properties.

e  8extra plot functions were added.

Increased speed
e  Photogeneration now 4 times faster. (Makes steady-state problems 25% faster overall).

New features introduced in Version 4.1

4.1 was a minor maintenance release (Release date: July 96).
Several bugs were fixed. In addition:
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e You can now use a previously solved solution as a starting point for a new one, using the ‘Continue’ feature in
the Compute menu.

e  Width of batch files was increased to 12 parameters.

e A new plot function (Convergence Error) was added.

Version 4.0 — Initial Windows release

Version 4.0 was the first version of PC1D for Windows. It was showcased at the 25th IEEE Photovoltaics Specialist
Conference in Washington DC, and publicly released in June 96. It replaced the DOS version, PC-1D version 3.3.
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File menu commands

The File menu offers the following commands:

Description
New

Open

Close

Save

Save As
Print

Print Preview
Print Setup
Exit

Enter or modify a text description of the contents of this parameter file.

Creates a new parameter file.

Opens an existing parameter file.

Closes an opened parameter file.

Saves an opened parameter file using the same file name.

Saves an opened parameter file to a specified file name.

Prints the current window.

Displays the current window on the screen as it would appear printed.
Selects a printer and printer connection.

Exits PC1D.
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View menu commands

The View menu offers the following commands:

Toolbar
Status Bar

Parameter
View

Four-
Graph
View

Interactive-
Graph
View

Shows or hides the toolbar.
Shows or hides the status bar.

The Parameter view is the start-up default. This text-type screen lists all of
the parameters that define your problem, and at the end there is a section for
reporting the results of calculations. You can double-click the mouse on most
lines in the Parameter view to open a dialog box to modify that parameter.

A schematic diagram of the device is also displayed, providing visual
feedback of doping, texturing, and internal shunt elements. This makes it
easier to recognize mistakes when designing complex devices. You can also
double-click on parts of the diagram to change various parameters.

The Four-Graph view provides a quick overview of what's happening in your
device. Double click on any of the four graphs to select it for detailed
examination using the Interactive-Graph view.

The Interactive Graph view allows you to examine specific data values on a
graph. If the data you need is not in one of the predefined graphs, you can
create a user-defined graph using the Graph menu to access any of 55
different functions.
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Interactive Graph View

This is the view you will want to use most often when inspecting solution results. It displays a single graph, and
allows you to zoom into regions of the graph, and extract the values of individual points.

To zoom into part of the graph:

With the mouse: Press the left mouse button. Drag over the area you want to zoom into. Release the left mouse button.

(To cancel the zoom, press the right mouse button or the ESC key).

With the keyboard: Use the arrow keys to move the caret (the blinking line) to one end of the area you are interested
in. Press ENTER. Move the caret to the other end. Press ENTER.

To zoom out:

With the mouse: Press the right mouse button.

With the keyboard: Press the ESC key.

Zooming out when the graph is already fully 'zoomed out' will return you to the four-graphs view.
To examine graphs from previous simulations:

Press PAGEUP or PAGEDOWN to view the graphs from the last 16 simulations.
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Help menu commands
The Help menu offers the following commands, which provide you assistance with this application:

Index Offers you an index to topics on which you can get help.
Using Help  Provides general instructions on using help.

About Displays the version number of this application.
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New command (File menu)
Use this command to create a new parameter file in PCI1D.

You can open an existing parameter file with the Open command.

Shortcuts
Toolbar:
Keys: CTRLAN
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Open command (File menu)

Use this command to open an existing parameter file. The parameters for a problem, including a description of both the
device and excitation, are stored in a binary-encoded parameter file with a PRM suffix. The parameter file also specifies
external data files that may be necessary to describe parameters that are a function of position, wavelength, or time.

You can create new parameter files with the New command.

Shortcuts
=
Toolbar: .
Keys: CTRL+O
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File Open dialog box

The following options allow you to specify which file to open:

File Name
Type or select the filename you want to open. This box lists files with the extension you select in the List Files of
Type box.
List Files of Type
Select the type of file you want to open:
Drives
Select the drive in which PC1D stores the file that you want to open.
Directories
Select the directory in which PC1D stores the file that you want to open.
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Close command (File menu)

Use this command to close all windows containing the active parameter file. PC1D suggests that you save changes to
your parameter file before you close it. If you close a parameter file without saving, you lose all changes made since
the last time you saved it. Before closing an untitled parameter file, PC1D displays the Save As dialog box and
suggests that you name and save the parameter file.
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Save command (File menu)

Use this command to save the active parameter file to its current name and directory. When you save a parameter file
for the first time, PC1D displays the Save As dialog box so you can name your parameter file. If you want to change
the name and directory of an existing parameter file before you save it, choose the Save As command. The parameters
for a problem, including a description of both the device and excitation, are stored in a binary-encoded file with a PRM
suffix. The parameter file also specifies external data files that may be necessary to describe parameters that are a
function of position, wavelength, or time.

Shortcuts
Toolbar:
Keys: CTRLAS
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Save As command (File menu)

Use this command to save and name the active parameter file. PC1D displays the Save As dialog box so you can name

your parameter file.

To save a parameter file with its existing name and directory, use the Save command.
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File Save As dialog box

The following options allow you to specify the name and location of the file you're about to save:

File Name
Type a new filename to save a parameter file with a different name. PC1D automatically adds the extension you
specify in the Save File As Type box, if you don't supply a different one.

Save File As Type
Choose between the latest version of PC1D, or an old file format which can be opened by older releases of PC1D.
Of course, new features can’t be saved in the old format.

Drives
Select the drive in which you want to store the parameter file.

Directories
Select the directory in which you want to store the parameter file.
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1,2, 3,4 command (File menu)

Use the numbers and filenames listed at the bottom of the File menu to open the last four parameter files you closed.
Choose the number that corresponds with the parameter file you want to open.
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Exit command (File menu)

Use this command to end your PC1D session. You can also use the Close command on the application Control menu.
PCI1D prompts you to save parameter files with unsaved changes.

Shortcuts
Mouse: Double-click the application's Control menu button.
Keys: ALT+F4
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Toolbar command (View menu)

Use this command to display and hide the Toolbar, which includes buttons for some of the most common commands
in PC1D, such as File Open. A check mark appears next to the menu item when the Toolbar is displayed.

See Toolbar for help on using the toolbar.

Page 23


http://www.processtext.com/abchlp.html

Toolbar

The toolbar is displayed across the top of the application window, below the menu bar. The toolbar provides quick
mouse access to many tools used in PC1D.

To hide or display the Toolbar, choose Toolbar from the View menu (ALT, V, T).
For help on the use of a particular toolbar button, select the button at the far right edge of the toolbar, displaying a

question mark and an arrow. The cursor will change to match this button. Point the new cursor to the button in
question and press the mouse key. A Help file will open on-screen with information about the purpose of that button.
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Status Bar command (View menu)
Use this command to display and hide the Status Bar, which describes the action to be executed by the selected menu
item or depressed toolbar button, and keyboard latch state. A check mark appears next to the menu item when the

Status Bar is displayed.

See Status Bar for help on using the status bar.
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Status Bar

The status bar is displayed at the bottom of the PC1D window. To display or hide the status bar, use the Status Bar
command in the View menu.

The left area of the status bar describes actions of menu items as you use the arrow keys to navigate through menus.
This area similarly shows messages that describe the actions of toolbar buttons as you depress them, before releasing
them. If after viewing the description of the toolbar button command you wish not to execute the command, then
release the mouse button while the pointer is off the toolbar button.

The right areas of the status bar indicate the following:

Indicator Description

Iteration Counter During a numerical solution, this frame shows how many
iterations have been completed toward the current solution.

Convergence Indicator / During a numerical solution, this frame shows a bar that

Element Counter moves towards the right as the numerical solution converges

to an answer. Otherwise, this frame indicates how many finite
elements are defined for the device.

Solution Status This field indicates the status of the current numerical
solution. If blank, then the current problem has not yet been
solved, or the parameters have been changed since the last
solution. Valid solutions are indicated as Equil, Steady, or
Trans for Equilibrium, Steady-State, or Transient results. Do
not use displayed results unless the Status frame indicates a
valid solution.

Time Step Number During a transient solution, this frame shows for which time
step number the displayed graphs apply.
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Index command (Help menu)

Use this command to display the opening screen of Help. From the opening screen, you can jump to step-by-step
instructions for using PC1D and various types of reference information.

Once you open Help, you can click the Contents button whenever you want to return to the opening screen.
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Using Help command (Help menu)

Use this command for instructions about using Help.
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About command (Help menu)

Use this command to display the copyright notice and version number of your copy of PC1D.
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Context Help command

n?

Use the Context Help command to obtain help on some portion of PC1D. When you choose the Toolbar's Context
Help button, the mouse pointer will change to an arrow and question mark. Then click somewhere in the PC1D
window, such as another Toolbar button. The Help topic will be shown for the item you clicked.

Shortcut
Keys: SHIFT+F1
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Title Bar

The title bar is located along the top of a window. It contains the name of the application and parameter file.
To move the window, drag the title bar. Note: You can also move dialog boxes by dragging their title bars.

A title bar may contain the following elements:

Application Control-menu button
Maximize button

Minimize button

Name of the application

Name of the parameter file
Restore button
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Scroll bars

Displayed at the right and bottom edges of the window. The scroll boxes inside the scroll bars indicate your vertical
and horizontal location in the window. You can use the mouse to scroll to other parts of the window.
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Size command (System menu)

Use this command to display a four-headed arrow so you can size the active window with the arrow keys.

&

After the pointer changes to the four-headed arrow:

1. Press one of the DIRECTION keys (left, right, up, or down arrow key) to move the pointer to the border you want
to move.

Press a DIRECTION key to move the border.
3. Press ENTER when the window is the size you want.

Note: This command is unavailable if you maximize the window.

Shortcut
Mouse: Drag the size bars at the corners or edges of the window.
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Move command (Control menu)

Use this command to display a four-headed arrow so you can move the active window or dialog box with the arrow
keys.

Note: This command is unavailable if you maximize the window.

Shortcut
Keys: CTRLAF7
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Minimize command (application Control menu)

Use this command to reduce the PC1D window to an icon.

Shortcut
Mouse: Click the minimize icon E on the title bar.
Keys: ALT+F9
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Maximize command (System menu)

Use this command to enlarge the active window to fill the available space.

Shortcut
Mouse: Click the maximize icon IZI on the title bar; or double-click the title bar.
Keys: CTRLAF10 enlarges a window.
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Close command (Control menus)

Use this command to close the active window or dialog box.

Double-clicking a Control-menu box is the same as choosing the Close command.
Shortcuts

Keys: CTRL+F4 closes the program window
ALT+F4 closes the active window or dialog box
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Restore command (Control menu)

Use this command to return the active window to its size and position before you chose the Maximize or Minimize
command.
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Switch to command (application Control menu)

Use this command to display a list of all open applications. Use this "Task List" to switch to or close an application
on the list.

Shortcut
Keys: CTRLA+ESC
Dialog Box Options

When you choose the Switch To command, you will be presented with a dialog box with the following options:

Task List
Select the application you want to switch to or close.

Switch To
Makes the selected application active.

End Task
Closes the selected application.

Cancel
Closes the Task List box

Cascade
Arranges open applications so they overlap and you can see each title bar. This option does not affect
applications reduced to icons.

Tile
Arranges open applications into windows that do not overlap. This option does not affect applications reduced
to icons.

Arrange Icons
Arranges the icons of all minimized applications across the bottom of the screen.
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Modifying the Parameter File
PC1D Parameter files are modified in one of two ways:

1. You can use the menu structure to select various aspects of the device or excitation and open dialog boxes which
allow you to change the values, or

2. You can double-click on most lines in the Parameter View to open a dialog box which will allow you to enter a new
value for that parameter.

If the set of parameters are modified in any way, PC1D will prompt you whether you want to save the modified
parameters, before it will allow you to exit the program or overwrite the current parameters.
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No Help Available

No help is available for this area of the window.
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No Help Available

No help is available for this message box.
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Compute Menu Commands

The Compute menu offers the following commands:

Run

Stop

Continue

Single Step

Start Again

Batch

Numerical

Begins numerical solution of the problem as currently set up, starting
with equilibrium and progressing to steady-state or transient conditions
as specified by the current Excitation Mode. 4 button on the toolbar
(running person) provides a quick way to invoke Run.

Stops the numerical computation in progress. The computation is
allowed to continue for one second after this command is selected. If it
has not then converged, the computation is terminated.

Resumes the numerical computation that was interrupted by the Stop
command. Or, if the excitation for a problem has been changed since it
converged, PC1D will redo the last solution phase using the current
solution as a starting point. You can use this feature to help
convergence in many cases.

Computes only the next step in the solution. A “step” is defined here as
the unit of computation leading to the next display of graphical
information. If the Numerical dialog has been set to display plots after
every iteration, then this is only one iteration. Otherwise, the
computation proceeds until convergence is obtained for equilibrium,
steady state, or one time step. A button on the toolbar (stepping
person) provides a quick way to Single Step.

Resets the computation so that a subsequent Single Step command will
start with problem initialization and equilibrium solution. Note that the
Run command always starts with problem initialization.

Opens a dialog box for enabling batch mode and identifying which
tab-delimited ASCII file contains the batch-parameter information.

Opens a dialog box for setting the parameters that control the numerical
method. These affect the number of finite elements and the convergence
of the solution.

Page 43


http://www.processtext.com/abchlp.html

Numerical Command (Compute menu)

This command opens a dialog box which allows you to set the following parameters which affect the numerical
computation algorithm. These parameters do not alter the definition of either the device or the excitation, but they will
influence the accuracy of the solution and the speed with which the solution converges to an answer. Improper
settings of these parameters can cause the program to fail to converge even for simple problems, so the default values

of each parameter are listed here for reference.

Element Size Factor This value determines the size of the finite elements used to partition the

Normalized Error
Limit

device. A smaller element size factor produces smaller elements, which
improves accuracy but takes more time. The default value is 0.5. Values
greater than 1.0 can produce elements so large that converge problems
may arise. Once the factor is small enough that all 500 available elements
are used, making it smaller will have no further effect.

This value determines when the solution is said to have converged.
Iterations will continue until the largest change in any of the three
potentials (electron or hole quasi-Fermi potential, or electrostatic
potential) at any node is less than this factor times the thermal voltage,
kT/q (which is about 26 mV at room temperature). The default value is
1E-6, and will rarely need modification.

Normalized Potential This value determines the maximum change in one iteration that is

Clamp

Clamping Phi/Psi

Maximum Time

Renode

allowed for any potential at any node, as a multiple of the thermal
voltage, kT/q. The default value is 1, which is rather conservative,
favoring robustness over speed. Increase this value for more speed if
convergence is not a problem. In particular, a higher value may be
desirable to increase speed when large reverse-bias voltages are
imposed. Note that you can change the clamp value during a solution,
for those times when you need a small value for steady state but a larger
value will do for subsequent transient steps.

These check boxes determine how the Normalized Potential Clamp is
imposed. Selecting Psi clamping prevents the electrostatic potential from
changing by more than the clamp amount with each iteration. Selecting
Phi prevents the separation between each quasi-Fermi potential and the
electrostatic potential from changing too much. AT LEAST ONE OF
THESE BOXES SHOULD BE SELECTED, as many problems will “blow
up” very quickly without some form of clamping imposed. The default is
for both boxes to be selected.

This value determines how long (in seconds) a solution is permitted to
continue before it is judged to be non-convergent. The default value is
60 seconds. Some problems involving internal shunt elements may take
longer than this to converge, but most problems that haven't converged
after a minute never will.

These three check boxes determine when the finite-element nodes are
reallocated. When initialized, the problem has 100 elements in each
defined region. It is usually desirable to renode during the equilibrium
solution, since the initial node allocation does not yet know where the
critical junction regions are located. Selecting renode for the
steady-state solution serves to refine the previous node allocation
based on the equilibrium solution, and allows the programto do an
emergency renode if the quasi-Fermi potential step across any one
element exceeds 32 times the thermal voltage. Renoding for a transient
solution should only be invoked when the excitation significantly alters
the space-charge regions, and it should especially be avoided during
fast transients where time derivatives are important. The default is to
renode during equilibrium and steady state solutions, but not during
transient solutions.

Display graphs after This check box is provided for those who are interested in observing the

every iteration

numerical computation performed by PC1D. When checked, the plots on
screen are updated after every iteration, not just when the solution has
converged. This slows the solution considerably, so should be chosen
only when the convergence behavior is of interest.
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Total velocity
saturation

This check box is provided for those who need to impose rigid
saturation of the total velocity of the carriers, due to both drift and
diffusion. Normally, when this box is not selected, the mobility of the
carriers is reduced only in response to a high electric field. When this
box s selected, the mobility is reduced in response to a high gradient in
the quasi-Fermi potential. Although checking this box invokes the
more-correct physical limitation, convergence is more difficult and
solutions can take more than twice as long to complete. It is
recommended only for heterostructure devices in which the current is
limited by thermionic emission over an energy barrier.
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Options menu commands

The Options menu provides commands that affect the environment in which PC1D runs on your computer, but which
have no effect whatever on the problem or its solution. The features you select with these commands are stored on
your computer in a file named PC1D.INI which is normally stored in your WINDOWS directory. Consequently, they
will be used whenever you start PC1D on your computer. They will not apply if you save a problem file on disk and

subsequently work with it using a different computer.

File Locations

Store Node Data

Device Update

This command opens a dialog box which allows you to specify which
subdirectory you would like to serve as the default location for each
type of external file used by PC1D. By segregating your files into
separate directories, you will find it much easier to locate the files that
you need later. If a field is left blank, the default location is assumed to
be the directory from which PC1D was started.

This command, when ticked, instructs PC1D to store the current solution
on disk whenever it stores the current problem parameters. This is useful
if you are in the middle of examining a solution in detail but need to quit
the program for a period. Saving the node data preserves the most recent
solution details, preventing you from needing to repeat the solution
when you return, but it also increases the size of the saved PRM files
substantially. The default is for this option to be disabled.

This command, when ticked, instructs PC1D to update all of the
on-screen graphs whenever a change is made in any of the parameters
that define the device. This can be quite helpful when setting up the
device parameters, because you can immediately see the impact of a
change in doping, thickness, etc. The default for this option is for it to
be enabled. However, some computers may not be fast enough to keep
up. If your computer seems to be lagging behind you when you are
setting up a problem, consider disabling this option.
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PCI1D Physical Constants

The following physical constants are used in PC1D calculations:

Elementary charge, q1.6021773E-19 C

Thermal voltage at 0.025851483 V
300 K, kT/q

Photon energy 1239.8424 eV-nm
factor, hc

Permittivity of free 8.8541878E-14 F/cm
space, €0

Kelvin-Celsius 273.15K
offset

Circle geometry 3.14159265359
constant,

The following program constants are constraints in this version of PC1D:

Maximum Elements 500

Maximum Time 200
Steps

Maximum 200
Wavelengths

Maximum Regions 5

Maximum Batch 30
Columns
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Device Schematic

A schematic diagram of the device is displayed in the parameter view, providing visual feedback of doping, texturing,
and internal shunt elements. This makes it easier to recognize mistakes when designing complex devices. You can also

double-click on parts of the diagram to change various parameters.

The parameters which can be modified from the diagram are:

Parameter
Background Doping
First Front Diffusion
First Rear Diffusion
Front/Rear Texturing
Surface Charge
Region Thickness
Shunt elements

Contacts

Where to click

Centre of a region

Front 3mm of a region

Rear 3mm of a region

Within 3mm outside the top/bottom of the cell
Between 3 and 6mm of the top/bottom of the cell
Within 3mm outside the right of the cell

Within 3mm outside the left of the cell

To the left of the shunt elements
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Print command (File menu)

Use this command to print the current window. This command presents a Print dialog box, where you may specify the
range of pages to be printed, the number of copies, the destination printer, and other printer setup options.

Shortcuts
Toolbar:
Keys: CTRLAP
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Print dialog box

The following options allow you to specify how the current window should be printed:

Printer
This is the active printer and printer connection. Choose the Setup option to change the printer and printer
connection.
Setup
Displays a Print Setup dialog box, so you can select a printer and printer connection.
Print Range
Specify the pages you want to print:
All Prints the entire current window.
Selection Prints the currently selected text.
Pages Prints the range of pages you specify in the From and To boxes.
Copies

Specify the number of copies you want to print for the above page range.

Collate Copies
Prints copies in page number order, instead of separated multiple copies of each page.

Print Quality

Select the quality of the printing. Generally, lower quality printing takes less time to produce.
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Print Progress Dialog

The Printing dialog box is shown during the time that PC1D is sending output to the printer. The page number
indicates the progress of the printing.

To abort printing, choose Cancel.
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Print Preview command (File menu)

Use this command to display the active current window as it would appear when printed. When you choose this
command, the main window will be replaced with a print preview window in which one or two pages will be displayed
in their printed format. The print preview toolbar offers you options to view either one or two pages at a time; move
back and forth through the current window; zoomin and out of pages; and initiate a print job.
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Print Preview toolbar

The print preview toolbar offers you the following options:

Print

Bring up the print dialog box, to start a print job.

Next Page

Preview the next printed page.
PrevPage

Preview the previous printed page.
One Page / Two Page

Preview one or two printed pages at a time.
Zoom In

Take a closer look at the printed page.
Zoom Out

Take a larger look at the printed page.
Close

Return from print preview to the editing window.
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Print Setup command (File menu)

Use this command to select a printer and a printer connection. This command presents a Print Setup dialog box, where
you specify the printer and its connection.
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Print Setup dialog box

The following options allow you to select the destination printer and its connection.

Printer
Select the printer you want to use. Choose the Default Printer; or choose the Specific Printer option and select
one of the current installed printers shown in the box. You install printers and configure ports using the Windows
Control Panel.

Orientation
Choose Portrait or Landscape.

Paper Size
Select the size of paper that the current window is to be printed on.

Paper Source
Some printers offer multiple trays for different paper sources. Specify the tray here.

Options
Displays a dialog box where you can make additional choices about printing, specific to the type of printer you
have selected.

Network...
Choose this button to connect to a network location, assigning it a new drive letter.
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Page Setup command (File menu)

<< Write application-specific help here. >>
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Batch Mode (Compute menu)

Batch mode is a short cut which allows you to rapidly perform an optimization study for a particular configuration
(PRM file). Rather than creating a series of PRM files, you only need to create one, and then specify which parameters
should be varied.

To do a batch run, click the ‘Batch’ button on the toolbar (the icon shows many people running).

Parameters can be chosen from the drop-down lists. There’s a description of the parameter at the bottom of the dialog
box. For input parameters, you need to specify the range to be varied over, the number of different values, and if they
should be varied logarithmically or linearly.

When you’ve finished, press OK. The table will appear at the bottom of the parameter view. Results parameters will
appear as question marks.

Run the simulation as normal. As each result is calculated, it will appear in the table, replacing the question mark. The
number of simulations performed so far will be displayed in the title bar.

Examining the results

Use the Copy button to copy the results into the clipboard. From there, they can be pasted into other programs. For
example, the results could be pasted into a spreadsheet and graphed.

If you’re interested in how a particular graph varies, select it in Interactive Graph View before running the batch. After
the batch has finished, use the PageUp and PageDown keys to see how the graphs varied for different parameter
values. (You can keep the axes constant while doing this by selecting ‘retain zoom’ in the Graph menu. You can reset
the graphs using ‘reset history graphs’ in the same menu).

Note: Any parameter that is disabled in the PRM file will have no effect on batch results. For example, the front texture
angle is irrelevant if texturing is disabled.

Advanced feature: Permute

If you vary multiple parameters, they can be varied together, or you can solve for all combinations. Click the ‘Permute’
check boxto do all permutations of that input parameter. If permute is off, the parameter will be tied to the parameter
above it.

External Batch Files

If you find the ‘QuickBatch’ method is too restrictive, you can also use an external batch file. This file should contain
only the parameters that vary between simulations, and the results that are desired. For example, a batch file for a solar
cell could contain a list of background doping values, and Voc, Isc and Pmax as desired results. To perform a batch
run, do the following steps:

Froma spreadsheet (e.g. Microsoft Excel), enter the parameters in tabular form. Place input parameters on the left hand
side of the table, and results parameters on the right. The parameters can be chosen froma list of about 150. (See
below for the list).

There is no intrinsic limit to the length of a batch file. Previously, batch files were limited to 100 lines. The maximum
number of lines now depends on the operating system you are using. In Windows 95, batch files are limited to a few
hundred lines (more if smaller font sizes are used in Parameter View). This limitation doesn’t apply to Windows NT.

Batch files can have 30 fields across (although only the first 12 will print on A4 paper, unless you select a very small
font size or copy the results into a spreadsheet program).

Save the table in “Tabbed Text” format. The file should end in “.txt”.

From PC1D, open your PRM file. Using the Compute:Batch menu, select the text file that you created with your
spreadsheet.

Note: Shortcuts to files on network drives are not supported. You must select the batch file directly.

Example

There is a sample batch file included with PC1D called BatchExample.txt, which may be useful for first-time users of the
batch capability.
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Batch Parameters
The parameters which can be specified are:
Input Parameters
Device Parameters
Region Parameters
Excitation Parameters
Numerical Parameters
Results Parameters
Voltage, current and power

Spatial results

Several abbreviations are used in batch parameter titles:

Fr=Front, Rr = Rear

Tx=Texture

Refl = Reflection, BroadRef=Broadband reflection
Bkgnd=Background

Dop=Doping

Pos=Position

Pri=Primary, Sec=Secondary

Insy=Intensity

Mono=Monochrome wavelength

Coll=Collector

SS=Steady-state value, TR 1=Initial transient value, TR2=final transient value

Page 58


http://www.processtext.com/abchlp.html

Input parameters

Device parameters

These batch parameters specify the device parameters which apply to the entire device (not just individual regions).
This includes the front and rear surface charge and reflection properties, and the device area.

Name
Area
FrTxAngle
FrTxDepth
RrTxAngle
RrTxDepth

FrBarrier

FrCharge
RrBarrier

RrCharge
EmitterR
BaseR
CollectorR
EmitterX
BaseX
CollectorX
Shuntl
Shunt2
Shunt3
Shunt4
Shunt1Xa
ShuntlXc
Shunt2Xa
Shunt2Xc
Shunt3Xa
Shunt3Xc
Shunt4Xa
Shunt4Xc
FrRefl
RrRefl
FrBroadRef
RrBroadRef
FrOutThick

FrMidThick
FrInThick

FrOutIndex
FrMidIndex

Meaning

Area

Front texture angle
Front texture depth
Rear texture angle
Rear texture depth

Height of front surface barrier
(positive= bands bend up)

Front surface charge

Units
cm2
degrees
um
degrees
um

eV

cm-2

Height of rear surface barrier (positive=eV

bands bend up)

Rear surface charge

Emitter internal resistance
Base internal resistance
Collector internal resistance
Emitter distance from front
Base distance from front
Collector distance from front
Value of 1st shunt element
Value of 2nd shunt element
Value of 3rd shunt element
Value of 4th shunt element
Anode position of 1st shunt element
Cathode position of 1st shunt
Anode position of 2nd shunt
Cathode position of 2nd shunt
Anode position of 3rd shunt
Cathode position of 3rd shunt
Anode position of 4th shunt
Cathode position of 4th shunt
Front reflectance (fixed)

Rear reflectance (fixed)

Front broadband reflectance
Rear broadband reflectance

Thickness of outer layer (for front
broadband)

“ front middle layer
“front inner layer
Refractive index of front outer layer

“ front middle layer

cm-2
ohms
ohms
ohms
um

um

um
seimens
seimens
seimens
seimens
um

um

um

um

um

um

um

um

%

%

%

%

nm

nm

nm
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FrInIndex
RrOutThick
RrMidThick
RrInThick
RrOutIndex
RrMidIndex
RrInIndex
FrintRefl1
FrintRefl2
RrintRefl1
RrintRefl2
FrintRefl
RrintRefl

“ front inner layer

Thickness of rear outer layer

“ rear middle layer

“rear inner layer

Refractive index of rear outer layer
“ rear middle layer

“rear inner layer

Front:First internal reflection
Subsequent internal reflection
Rear: First internal reflection
Subsequent internal reflection
Front internal reflection (all passes)

Rear internal reflection (all passes)

Region parameters

These batch parameters let you define region-specific device parameters.
With these parameters, you must specify a region number (in parentheses) after the name. e.g. BkgndDop(3) gives
values for the background doping of region 3. Region 1 is the region closest to the front of the device.

Name
Thickness
BkgndDop
FrDopPeakl
FrDopDpth1
FrDopPos1
FrDopPeak2
FrDopDpth2
FrDopPos2
RrDopPeakl
RrDopDpth1
RrDopPos1
RrDopPeak2
RrDopDpth2
RrDopPos2
BulkTaun
BulkTaup
BulkTau

BulkEt
FrSn

FrSp

FrEt
RrSn

RrSp

Meaning

Thickness of region
Background doping

Ist Front doping - peak value
“ - depth factor

“ - peak position

2nd front diffusion - peak

- depth factor

“ - peak position

Ist rear diffusion -peak

“ - depth factor

“ - peak position

2nd rear diffusion - peak

*“ - depth factor

“ - peak position

Bulk recomb.: electron lifetime

Bulk recombination: hole lifetime

nm
nm

nm

%
%
%
%
%
%

Units
um
cm-3
cm-3
um
um
cm-3
um
um
cm-3
um
um
cm-3
um
um
us

us

Bulk recombination, set electron and us

hole lifetime to the same value

Bulk trap energy level

eV

Front surface electron recombinationcny's

velocity

Front surface hole recombination
velocity

Front surface trap energy level

cn/'s

eV

Rear surface electron recombination cny's

velocity

Rear surface hole recombination
velocity

cnys
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RrEt
FrS

RS

Ni200
Ni300
Ni400
BandGap
AbsEd1
AbsEd2
AbsFil
AbsEi2

Rear surface trap energy level

Front surface recomb velocity,
electrons and holes

Rear surface recomb velocity,
electrons and holes

Intrinsic concentation at 200K
Intrinsic concentation at 300K
Intrinsic concentation at 400K
BandGap

Ist Direct BandGap (for absorption)

2nd Direct Bandgap
Ist Indirect BandGap
2nd Indirect BandGap

Excitation parameters

These parameters give you control over the excitation parameters to be used in each individual run in a batch mode.
These are the same as the parameters in the dialog boxes which can be accessed from the Excitation menu.

Name
Temp
BaseResSS
BaseResTR
BaseVItSS
BaseVItTR1
BaseVItTR2
CollResSS
CollResTR
CollVItSS
CollVItTR1
CollVItTR2
PrilnsySS
PrilnsyTR1

PrilnsyTR2

PriMonoSS
PriMonoTR1
PriMonoTR2
PriBlackT
SeclnsySS

SeclnsyTR1
SeclnsyTR2
SecMonoSS
SecMonoTR1
SecMonoTR2
SecBlackT

Meaning

Temperature of device

Base steady-state resistance
Base transient resistance

Base steady-state voltage

Base transient initial voltage
Base transient final voltage
Collector steady-state resistance
Collector transient resistance
Collector steady-state voltage
Collector transient initial voltage

Collector transient final voltage

cn/'s

cnys

eV

eV
eV
eV

Units
kelvin
ohms
ohms
v

v

\Y%
ohms
ohms
A%

v

\Y%

Primary source steady-state intensityWcm-2

Primary source initial transient
intensity

Primary source final transient
intensity

Pri: Wavelength - steady state
Pri: initial transient wavelength
Pri: final transient wavelength
Pri: Blackbody temperature

Secondary source steady-state
intensity

Sec: Initial transient intensity
Sec: Final transient intensity
Sec: Wavelength - steady state
Sec: Initial transient wavelength
Sec: Final transient wavelength

Sec: Blackbody temperature

Wem2

Wem-2

nm
nm

nm
kelvin
Wem-2

Wem:2
Wem2
nm
nm
nm

kelvin
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Numerical parameters

These parameters give you control over the numerical parameters to be used in each individual run in a batch mode.
These are the same as the parameters in the Compute:Numerical... dialog box. They're provided here to make it possible
to do batch runs involving simulations with different convergence properties.

Name Meaning Units
ElemSize Element size factor -
ErrorLimit Normalized error limit -
Clamp Normalized potential clamp -

Page 62


http://www.processtext.com/abchlp.html

Results parameters

Voltage, current and power

These results parameters give you access to the voltage, current and power for the base and collector contacts, and
for the internal shunt elements. The values displayed in the batch results will be the steady-state values (for steady
state excitation mode) or the final transient time step (for transient excitation).

Name Meaning Units
Vb Base voltage v
Ve Collector voltage v
Ib Base current A
Vb Collector current A
BaseVoc Voc, base contact \"%
Baselsc Isc, base contact A
BasePmax Pmax, base contact \\%
CollVoc Voc, collector contact A%
Colllsc Isc, collector contact A
CollPmax Pmax, collector contact \\%
V1 Voltage across 1st shunt element  V
I1 Current through 1st shunt element A
V2 Voltage across 2nd shunt element V
2 Current through 2nd shunt element A
V3 Voltage across 3rd shunt element  V
I3 Current through 3rd shunt element A
V4 Voltage across 4th shunt element  V
14 Current through 4th shunt element A

Spatial results

These parameters give you access to all of the results used by the spatial graphs . You must specify the distance from
front (in um) in parentheses after the name. e.g. Jn(10.5) gives the electron current density at the point 10.5 um from the
front surface. The values displayed in the batch results will be the steady-state values (for steady state excitation
mode) or the final transient time step (for transient excitation).

Name Meaning Units
Na Acceptor Doping Density cm-3
RBulk Bulk Recombination Rate cm-3/s
Rho Charge Density C/em3
Ec Conduction Band Edge eV
Cond Conductivity S/cm
CCum Curmulative Conductivity S
CCum_ Cunulative Excess Conductivity S
Geum Cumulative Photogeneration s-1
Rcum Cumulative Recombination s-1
Perm Dielectric Constant (Permeability) -

Ld Diffusion Length m

Nd Donor Doping Density cm-3
Eg Effective Energy Gap eV
Nie Effective Intrinsic Concentration cm3
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E

In

Jn

N
Ndiff
Ndrift
MuN
PhiN
Vn
Psi
Rho_
Cond
N_
Nratio
Psi_
P
Pratio
PNratio
G

Ip

Jp

P
Pdiff
Pdrift
MuP
PhiP
Vp
Tau
PNnorm
Res

It

Jt
Evac
Ev

Electric Field

Electron Current

Electron Current Density
Electron Density

Electron Diff. Current Density
Electron Drift Current Density
Electron Mobility

Electron Quasi-Fermi Energy
Electron Velocity
Electrostatic Potential

Excess Charge Density
Excess Conductivity

Excess Electron Density
Excess Electron Density Ratio
Excess Electrostatic Potential
Excess Hole Density

Excess Hole Density Ratio
Excess pn Product Ratio
Generation Rate

Hole Current

Hole Current Density

Hole Density

Hole Diff. Current Density
Hole Drift Current Density
Hole Mobility

Hole Quasi-Fermi Energy
Hole Velocity

LLI Carrier Lifetime
Normalized Excess pn Product
Resistivity

Total Current

Total Current Density
Vacuum Energy

Valence Band Edge

V/iem

Alcm2
cm3
A/cm2
Alcm2
cm2/Vs
eV
cny's

C/cm3
S/cm

cm-3

ohm*cm

A/cm2
eV
eV
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Excitation Menu

The excitation menu offers the following commands:

Mode

Temperature

Base/Collector
Source Circuits

Photogeneration

Excitation Files

This command opens a dialog box which allows you to control whether
excitation is applied, and if so, whether it is steady-state or transient.

This command opens a dialog box which allows you to set the
temperature of the device. You can specify the temperature in either
kelvin or degrees Celsius. This temperature is also used to compute
adjustments to the carrier mobilities, bulk and surface recombination,
optical absorption, and the exponential factor for any internal shunt
diodes. However, the saturation current density, conductance, and
capacitance of internal shunt elements are NOT adjusted for
temperature; you must adjust these values separately for each
temperature.

These commands open dialog boxes which allow you to specify the
Thevinin-equivalent circuits for the base and collector. These circuits
are only active if base and/or collector contacts have been Enabled for
this device.

This selection allows you to introduce photogeneration in the device.
[llumination can be provided froma primary and/or secondary light
source, or the photogeneration profile can be supplied from an external
file.

This set of commands (New, Open, SaveAs) allows you to create,
retrieve, or store binary files that contain all of the parameters needed to
define the excitation. These excitation files, with suffix EXC, can then be
used with a variety of different devices. Since version 5.0, the graph
definitions are also saved in the excitation files. 4 foolbar button is
provided to open the dialog box for retrieving a previously defined
excitation file.
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Excitation Mode (Excitation menu)

The excitation mode line can be set to Equilibrium, Steady State, or Transient. The choice determines the final state the
solution will achieve before stopping. The solution will always proceed by solving first for Equilibrium, then Steady
State, then Transient.

If the Mode is Transient, it is necessary to supply additional details for controlling the time dependence of the
solution. The Step Size is the elapsed time between time steps. Setting this value too small may cause convergence
problems. Large values (e.g. 1 second or more) can be used to simulate the quasi-static response of the device to a
swept excitation. Examples include current versus voltage and spectral response versus wavelength. The initial time
step, which immediately precedes t=0, can be set to a different value from the remaining steps. Setting this value small
permits the simulation of an abrupt change in excitation at time t=0. The entry for Number of Time Steps is the number
of time steps of duration Time Step Size that are desired. The total duration of the transient will be the product of these
two values.
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Base/Collector Source Circuit (Excitation menu)

There are two identical Thevinin-equivalent source circuits; one associated with the base contact and one associated
with the collector contact. Both circuits contain a voltage source and a series resistance. Different values of voltage
and resistance can be specified for steady state versus transient conditions. Changing the voltage between its
steady-state and initial transient value causes a step change in voltage at t=0. Setting the final transient value different
from the initial transient value causes the voltage to sweep linearly from the initial to the final value during the course
of the transient solution.

The source series resistance affects how much current flows in the device for a given source voltage, but the loss
associated with these elements is not reflected in the device performance as revealed in plots of collector or base
current versus voltage. The value of series resistance can be specified either in ohms, or in ohm-cm. In the latter case,
the series resistance is adjusted for each solution based on the area of the device being simulated.

A constant-voltage condition at a contact is achieved by setting the corresponding source series resistance to zero. A
constant-current condition is maintained by setting both the source voltage and series resistance to large values, so
that their ratio gives the desired current. The open- circuit voltage at either the collector or base contact can be
obtained by setting the source voltage to a small (can be zero) value, and the corresponding resistance to a large value
(1 megohm s usually plenty).

When a simple linear voltage ramp is not adequate, time-dependent source-voltage values can be supplied from an
external ASCII data file having a filename with suffix VLT. Each line in the file should contain three numerical values,
separated by one or spaces or by a tab. The first value on each line should be the time (in seconds), the second value
is the source voltage (in volts), and the third value should be the series resistance (in ohms).The time values must be
monotonically increasing. The maximum number of lines read from the file is 200. Note that the time values in this file
do not affect the time steps used in the solution, which are determined by the Mode command. Rather, voltage values
for each time step are interpolated from this file.
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Photogeneration (Excitation menu)

The photogeneration options allow you to apply photoexcitation to the device, either as a photogeneration profile
supplied via an external file, or using one or both of two light sources which can illuminate either the front or rear
surface of the device.

When using the light sources, PC1D internally calculates the photogeneration rate within the device. At each incident
wavelength, after accounting for incident-surface reflection, the light is absorbed in the device using the absorption
coefficients for each region. If enabled, some light will be lost due to free carrier absorption. If the device has texture,
then the photons do not travel parallel to the solution direction (x). The direction they travel makes a different angle
with respect to x near the front surface than near the back. Both angles are calculated using the facet angle and the
index of refraction for the material of region 1, with the transition between these two angles assumed to occur abruptly
when x exceeds one-sixth of the facet depth. If the internal reflectance for the surface opposite the incident surface is
non-zero, then some photons reflect from that surface with either the same angle at which they arrived (specular) or
randomly-directed (diffuse). If the internal reflectance at the incident surface is non-zero, then some of this reflected
light gets trapped within the device until it eventually is either absorbed in the device or fails to be reflected from one
surface of the other.

Photogeneration Profile

One photogeneration option is to supply an external ASCII file with suffix GEN that contains photogeneration
information. This file should have two values on each line, separated by one or more spaces or by a tab. The first value
is a position representing the distance of that location from the front surface, in um. The second value is the
cumulative photogeneration rate in the device between the front surface and that position, in carrier-pairs per second
per square cm of projected area. Both the position and photogeneration values must be monotonically increasing
functions within the file, and both must start with a value of 0.0 on the first line. Photogeneration information provided
for positions beyond the rear surface of the device are ignored. If the device is thicker than the last entry in the file,
then no photogeneration is assumed beyond the last position defined in the file.

Primary/Secondary Illumination Intensity

These commands open a dialog box to examine or modify the magnitude and time dependence of light incident on the
device, and to select whether the light is incident on the front or rear surface of the device. To use either of the
illumination sources, you must first Enable that source from within this dialog box. Different values of illumination
source intensity can be specified for steady state versus transient conditions. Changing the intensity between its
steady-state and initial transient value causes a step change in intensity at t=0. Setting the final transient value
different from the initial transient value causes the intensity to sweep linearly from the initial to the final value during
the course of the transient solution. The values entered correspond to the total power density normally incident on the
surface of the device, measured in W/cm2. One standard "terrestrial sun" corresponds to an intensity of 0.1 W/cm2.

When a simple linear ramp of intensity is inadequate, time-dependent light intensity values can be entered from an
external ASCII data file having a filename suffix LGT. Each line in the file should contain two values, separated by one
or more spaces or by a tab. The first is a time, in seconds. The second is an intensity value with units of W/cm2. The
lines must have monotonically increasing time values. The maximum number of lines in the file is 200. The time values
in this file do not affect the time step size or number of time steps used in the solution. Rather, an intensity value is
interpolated from the LGT file for each point in time specified in the Mode command.

Primary/Secondary Illumination Spectrum
The illumination spectrum choices are Monochrome, Black-Body, or External.

The Monochrome option allows you to specify that all of the incident power occurs at a single wavelength. Different
values of wavelength can be specified for steady state versus transient conditions. Changing the wavelength between
its steady-state and initial transient value causes a step change in wavelength at t=0. Setting the final transient value
different from the initial transient value causes the wavelength to sweep linearly from the initial to the final value
during the course of the transient solution.

The Black-Body option allows you to invoke a black-body spectrum corresponding to a specified temperature. The
spectrum s actually implemented as a group of discrete wavelengths, so you must declare the number of discrete
wavelengths (maximum 200) and the range of wavelengths to include. You can artificially limit the wavelength range to
simulate the effect of a filtered spectrum. The total power density in the black-body spectrum incident on the device is
adjusted to match the values specified for illumination intensity. Note that for a given temperature, there is a limit to
the intensity that can be obtained from a black body source; however, PC1D does not verify whether this limit has
been exceeded.

The External option allows you to supply an external ASCII file that defines a spectral distribution, represented as a
group of discrete wavelengths. These files have suffix SPC. Several important spectrums are provided with PC1D,
including the air-mass 1.5 direct and global ASTM solar spectrums, and the extraterresrial solar spectrum. These files
contain two values on each line, separated by one or more spaces or a tab. The first value is a wavelength in nm, and
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the second is a power density in W/em2 (NOT spectral density, W/um/cm2). The entries must be in order of increasing
wavelength, with a maximum of 200 wavelengths allowed The power densities are scaled as necessary so that the total
light intensity for the spectrum as a whole equals the value specified for illumination intensity.
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Device Menu

The Device menu offers selections in four groups:

Region
Manager

Region
Parameters

Device
Parameters

Device Files

This group of selections allow you to manipulate the number of regions in
your device. Each region can be a different material, with its own
parameters.

This group of selections pertain only to the current region. They allow
you to examine and modify the thickness, material, doping, and
recombination parameters.

This group of selections pertains to the device as a whole. They allow you
to examine and modify the area of the device, surface texture, surface
charge, external circuit contact locations, and the optical reflectance, both
external and internal.

This group of commands (New, Open, SaveAs) allows you to create,
retrieve, and store device files, having a suffix DEV. These contain all of
the information about the device only, with no excitation or numerical
solution data.
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Region Manager (Device menu)

The Region Manager selections in the Device Menu offer the following commands:

Select Region

Insert Region

Remove Region

Selecting a region number makes that the “current” region, such that any
examination or modification of region parameters using the Device Menu
will apply to that region. A region can also be selected by clicking on any
line pertaining to that region in the Parameter View. The current region is
displayed on the toolbar as a button. Pressing this button increments the
current region. Region numbers that are not defined for this device are
disabled.

Selecting a number inserts a new region at that point in the device. Region
1 is always the front of the device. The new region will be defined with
parameters that duplicate the most recently selected region, except that
surface recombination and diffusions are set to zero. Once inserted, the
new region becomes the current region.

Selecting a number removes that region from the device. Any
higher-numbered regions are shifted toward the front of the device. The
current region is reset to one of the regions still remaining.
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Region Parameters (Device menu)

The Region Parameter selections in the Device menu allow you to examine or modify the parameters in the following
categories. In each case, the command applies only to the region that is currently selected. The currently selected
region is indicated on the toolbar as a button.

Thickness
Material
Doping

Recombination
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Region Thickness (Device menu)

This command opens a dialog box for specifying the thickness of the current region, in units of um.
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Region Material (Device menu)

The parameters that define a type of material can be stored in binary files having the suffix MAT. Three commands at
the bottom of the Material menu allow you to create, retrieve, and store these material files. Several MAT files for the
most commonly encountered materials are provided on the distribution diskette with PC1D. Loading a new MAT file
will only affect the current region. In addition, the Material menu allows you to examine and modify the following
parameters for the current region:

Permittivity
This is the low-frequency (dc) value of the permittivity, expressed as a multiple of the permittivity of free space. This

value is also known as the dielectric constant of the material. It defines the amount of charge needed to produce a
given electric field in the material.

Band Structure

This command opens a dialog box which contains several parameters that are intrinsic to the band structure of the
material.

The Band Gap value is used with the Electron Affinity to establish the location of the conduction and valence band
edges relative to the vacuum level. For single-region problems they have no effect on the numerical solution, but for
heterostructures they affect the discontinuity in the band edges at the interfaces between regions in accordance with
an Anderson model of the interface, producing charge dipoles at these locations even if the doping is uniform.

The Nc/Nv Ratio refers to the effective density of states for the conduction and valence bands. This ratio affects the
location of the intrinsic energy level within the bandgap, and only affects the solution of heterostructure problems.

Three values can be entered for the intrinsic carrier concentration, at 200, 300 and 400 K. These values are used to
interpolate a value for the solution temperature, using a parabolic fit of log(ni) versus 1/T. These values have a major
impact on the results obtained for any minority-carrier device.

Material Recombination

This dialog box allows you to specify parameters that affect how the recombination rates in this material are influenced

by temperature, doping, and electric field. These parameters are often fairly consistent for a given material, and thus
are included as material parameters. The base recombination rates for surfaces and bulk are not considered to be a
property of the material, and are set separately for each region. See the entry for Region Recombination.

Three Auger recombination coefficients are required to properly compute recombination in either heavily doped or
highly injected material. The n-type and p-type coefficients apply to material in low-level injection, while the

high-injection coefficient applies to material in high-level injection. The high-injection coefficient represents the sum of
both n-type and p-type Auger recombination. It is included as a single factor because in high-level injection the excess

electron and hole concentrations are similar. The recombination rate due to Auger processes is computed from the
following expression, which weights the result to favor either the low-injection or high-injection coefficients as
appropriate:

R= (Cnn+ Cpp)(pn —nl-ze),

N C
C,=Cup( b )+ Hu( P )
Np+p 2 Np+p

N C n
C =C Ay ZHL .
P pLL](NA +n) 2 (NA +n)

A band-to-band recombination coefficient can be provided. This is primarily important only for direct-bandgap
materials. The additional recombination at each point due to coefficient B is given by

R= B(pn - nlze)

Parameters can be entered for the material to indicate the effect of temperature and doping on SRH surface and bulk
recombination. For bulk lifetime, the values of tn and tp specified for the region are modified for use in the SRH
recombination formula to reflect the actual device temperature and the local doping density. These parameters can be
adjusted to either increase or decrease the impact of temperature and doping. The temperature effect is given by the
following formula, applied to both electron and hole lifetimes:
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=10

and the doping effect is given by

o
N
T(N) = TO(N—j ; N> Nonset

onset

The parameters in these two expressions are empirical and very dependent on the crystal growth technology. For
silicon, reasonable choices are -0.5 for the temperature exponent, -0.4 for the doping exponent, and 1E15 cm-3 for the
onset.

For surface recombination velocities, both electron and hole values are modified using the following formulas, which
have the same form as the bulk-lifetime expressions.

s=s L)

and the surface doping effect is given by

N (04
—) ; N>N,

onset

S(N) = SO(

onset

The parameters in these two expressions are very dependent on the surface treatment process. For thermal oxide on
n-type silicon, reasonable choices are 0.5 for the temperature exponent, 1.0 for the doping exponent, and 1E18 cm-3 for
the onset. No consistent dependence of S on surface doping density has been demonstrated for p-type silicon at the
time of this writing.

Field-Enhanced Recombination

The Hurkx model for trap-assisted tunneling is used. This extends the conventional SRH recombination expression to

include trap-assisted tunneling enhanced by the local electric field. This model replaces the carrier lifetimes Tn and Tp

Ty TP

2
in the SRH model with 1 +17 1+T
where I is defined by:

A FY
I' = prefactor.~—exp| | —
K r F r
(equation A2 in Hurkxet. al.)

prefactor =2+/3n = 614

This expression can be parametrised by specifying a prefactor ( ) and the value of

Fgamma at 300K. Hurkx gives:

% 3
A = 24m* (KT)

= i

(equation A3 in Hurkxet. al.).
and suggests m*=0.25m0.
WARNING: Do not use this model blindly!

This model is only valid provided the electric field does not get too large. It will be valid in general for midgap traps,
but for shallow traps in regions of very high electric field, it may dramatically overestimate the impact of trap-assisted
tunneling (for high fields, I" no longer depends exponentially on F). In these sitations, the value for the prefactor and
for Fgamma can be modified to give more realistic simulations.
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At present, there is insufficient experimental data to justify a more complexmodel, although Hurkx provides an
additional high-field equation (eqn A5 of his 1992 paper).

Reference:

G.A.M. Hurkx, D.B.M. Klaassen, and M.P.G. Knuvers, “A New Recombination Model for Device Simulation Including Tunneling”, IEEE
Trans. Electron Devices, ED-39, (Feb. 1992), pp. 331-338.

Bandgap Narrowing

The parameters entered for bandgap narrowing allow the equilibrium pn product to depend on the local doping density
according to the following expression:

pn = nlze _ nl-ze(AEc+AEV)/kT,

N

AE, = Slopey x In D
Onset

N
AE, = Slopep x In| —4—]|,
Onset p
where the log expressions are taken equal to zero for doping densities less than the respective onset values.
Mobilities
The mobilities of electrons and holes can either be set to fixed values throughout the region, or calculated based on

the temperature and local doping density using a model. The model uses a different set of coefficients where the carrier
is in the minority than where it is in the majority. The expression used has the following form:

—u.. )TR2
H(X,T) = uminTr'lﬁl + (Mmax Hmm) . (XTnB4 ’
Np(x)+ N (%)

3
N, ref ]:’IB

where Tn is the temperature normalized to 300 K. The mobility model also allows for a maxinum velocity for each
carrier. This is implemented as a reduction in the mobility at each point in the device where the velocity that the
carriers would have achieved approaches or exceeds the saturation velocity. The low-field mobility is replaced with a
high-field mobility given by:

Hir

>
1+[“LFE/ )
vsat

Normally, the electric field is used for “E”. This produces the required mobility reduction in regions where the high
carrier velocity is due to a high electric field, as at junctions. A more accurate approach is to use the gradient in the
quasi-Fermi potential in place of E in this expression. This can be done in PC1D by selecting Total velocity saturation
in the Compute:Numerical dialog box. Note, however, that convergence is less robust and solutions will take much
longer with this option selected.

Wpr =

The mobility model does not account for mobility degradation due to carrier-carrier scattering associated with
high-level injection.

Refractive Index

The index of refraction can be either a fixed value or a function of wavelength using data imported from an external disk
file. External index-of-refraction files are standard ASCII files with a filename suffix INR. Each line in the file should
contain two numerical values, separated by one or more spaces or a tab. The first value on each line is a value of
free-space wavelength, in nm. The second value on each line is the index of refraction at that wavelength. The
maximum number of lines allowed is 200. All values of the index must be positive, and the values of wavelength must
increase monotonically. If the range of wavelengths provided is less than is required for the solution of a problem, the
index of refraction for the first (or last) wavelength is used for all smaller (or larger) wavelengths.
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Optical Absorption Coefficients

The optical absorption coefficient as a function of wavelength can be generated as a function of temperature using an
internal model, or read from an external disk file. When experimental data for the temperature of interest is available, it is
generally better to use this data than to rely on the internal model. Only absorption that leads to photogenerated
carriers should be considered, since PC1D assumes that every intinsically absorbed photon produces an electron-hole
pair. Parasitic absorption processes can be modelled through the Free-Carrier Absorption dialog.

The internal model for photon absorption includes two direct-gap transitions and eight indirect transitions. The
indirect transitions are based on two indirect gaps and either absorption or creation of phonons having two possible
energies. Temperature affects the absorption coefficient, a, through a decrease in the energy gaps and through a
change in the probability of phonon-assisted transitions. The entries required in the absorption dialog are the energy
gaps at 300 K. All four energy gaps are assumed to depend on the absolute temperature (7) through a temperature
coefficient () and temperature offset (y):

BT’
T+y'

Eg=Eg, —

The contributions to the absorption coefficient due to direct transitions for photons with energy hv greater than the
energy gap EGdi are given by

The eight phonon-assisted transitions for indirect-gap energies EGi and phonon energies Epj take the form

2
hv—Eg +E
an:Al]( +E 'l/kT p]) 5
i(e_ o —1)

i=12;7=12.

The upper signs correspond to phonon-absorbing transitions, while the lower signs are for phonon-creating
transitions. Only those terms for which hv +/- Epj > EGi are included. Otherwise, there is no absorption due to that
transition. The indirect-gap absorption is clamped for energies greater than the next-higher direct gap. All ten
absorption coefficients are added together to yield the total absorption coefficient for each incident wavelength of
light (hv = he/A, where he = 1239.8424 eV*nm).

External absorption files are standard ASCII files with a filename suffix ABS. Each line in the file should contain two
numerical values, separated by one or more spaces or a tab. The first value on each line is a value of free-space
wavelength, in nm. The second value on each line is the absorption coefficient, in cm-1. The maximum number of lines
allowed is 200. All values of the absorption coefficient must be positive, and the values of wavelength must increase
monotonically. If the range of wavelengths provided is less than is required for the solution of a problem, the
absorption coefficient for the first (or last) wavelength is used for all smaller (or larger) wavelengths. For this reason, it
is important that the last entry in the file give an absorption coefficient of zero. Otherwise, PC1D will assume that the
final (nonzero) value applies even out to very long wavelengths, thereby greatly overestimating the total
photogeneration. Room-temperature absorption files are provided with PC1D for several materials.

Free-Carrier Absorption

Free-carrier absorption competes with intrinsic absorption, reducing the fraction of photons which generate
electron-hole pairs.

The free-carrier absorption across a device is not only dependent upon the wavelength of incident light, but also
depends upon the profile of the carrier concentrations across the device. It can be specified by the free-carrier
absorption coefficient, which for monochromatic incident light is assumed to take the form

OLFC = Kln}\,a + szkb

where K1, K2, a, b are empirically determined constants, and A is measured in nm. At the time of writing, estimates of
these parameters were available for several materials:

K1 a K2 b Source
AlSb 1.9e-24 2 Fan
GaAs  4e-29 3 Fan
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GP  (15¢24)  (18) Fan

GaSb  9e-31 35 Fan

Ge ~5e-25 ~2 Fan
InAs 6.5e-29 3 Fan
InP Se-27 2.5 Fan
InSb 2.8e-25 2 Fan

Si 2.6e-27 3 2.7e-24 2 Schmid
References:

D.K. Schroder, R.N. Thomas, and J.C. Swartz, “Free Carrier Absorption in Silicon”, IEEE Trans. Electron Devices, ED-25, (Feb. 1978),
pp. 254-261.

P.E. Schmid, “Optical Absorption in Heavily Doped Silicon”, Phys. Review B (1981), Vol 23, pp. 5531-5536.

H.Y. Fan, “Semiconductors and Semimetals”, ed. R.K. Williamson and A.C. Beer, Academic Press (1967), Vol 3, p.409.

For reasons of speed, PC1D calculates the photogeneration only once for each solution step, using the values of n
and p which were calculated for the previous step. For example, the steady-state photogeneration will be based on the
equilibrium concentrations of electrons and holes. Although n and p will vary from their equilibrium values, the
perturbation is unlikely to have a significant effect.

For the rare situations where the change in n and p during solution is important, the Compute:Continue menu
command can be used at the conclusion of a steady-state problem. This will cause the photogeneration to be
recalculated, using the values of n and p obtained from the steady-state solution. The steady state solution will then
be resolved using the new photogeneration.
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Region Doping (Device menu)
This selection allows you to specify the doping densities for donors and acceptors in the current region.
Background Doping

This commands opens a dialog box where you can specify the doping density and the doping type (n-type or p-type)
for background doping that is present uniformly throughout the layer. The mobilities at 300 K for both electrons and
holes at this doping density are displayed for reference, as are the diffusivities. The mobilities are either fixed or
variable with doping, as selected for this region's material). The majority-carrier mobility shown is used to calculate the
resistivity. If you want the doping density that corresponds to some desired 300-K resistivity, then you can just type
the desired resistivity directly into this field, then hit the Tab key to set the doping density accordingly.

Front/Rear Diffusions

Doping profiles can be specified for both the front and rear surfaces of the current region. These profiles can be
generated using internal models or can be imported from an external disk file.

The internal model allows for two diffusions at each surface. After selecting either the first or second diffusion for the
surface, a dialog box is opened for specifying the diffusion details. The dialog box for the first diffusion on the front
and rear surfaces can also be opened using a button on the toolbar. Each diffusion must be Enabled within its dialog
boxbefore it becomes active. The toolbar button will appear to be depressed if that diffusion has been Enabled.
Diffusions can be specified as n-type or p-type. Each diffusion can take one of four shapes, defined as follows:

Uniform N(x) =N :

0y Xp <X <X, +Xy

Exponential N = Noe_‘x_xl"/xd

Gaussian 5

2
N(x) = Noe_(x_xp) td

Erfc N(x)=N, erfc((x —x,)/ xd)

where No is the Peak Doping, xd is the Depth Factor, and xp is the Peak Position, all of which are adjustable. Note that
N(x) = No for x<xp for the Erfc shape.

Also shown in the dialog box are the calculated sheet resistance (ohms/square) and junction depth. The junction
depth is based on the currently specified background doping density for the region. The sheet resistance is calculated
based on the diffusion profile up to this junction depth, using a temperature of 300 K and the majority-carrier mobility
(either fixed or variable, as specified for this region's material). The calculation of the sheet resistance ignores
conductance due to dopants from the background or from other diffusions.

To obtain a diffusion with a given junction depth and sheet resistance, you can type the desired sheet resistance in
the space provided, then press the Tab key. The Peak Doping is adjusted to give the requested sheet resistance. If the
junction depth does not match the desired value, type the desired value in that field, then press Tab to adjust the
Depth Factor to obtain the desired junction depth. If the sheet resistance is affected, you can re-enter the desired
value in that space, and repeat the cycle until convergence is obtained. Rarely are more than a few iterations required
to get quite close to the desired combination.

External diffusion profiles are standard ASCII files with a filename suffix DOP. These can be created using a text editor
or generated by another computer program. Each line in the file should contain three numeric values, each separated
by one or more spaces or a tab. The first value on each line is a value of distance inward from the surface of the region,
with units of ym. The second value on each line is the donor doping density at that position, with units of cm-3. The
third value on each line is the acceptor doping density, with units of cm-3. The position values must start at 0 and
increase monotonically. The maximum number of positions that may be defined in the file is 500.
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Region Recombination (Device menu)

This selection allows you to specify the recombination parameters in the bulk and at both the front and rear surface of
the region.

Bulk Recombination

The bulk recombination model used by PC1D supplies a single Shockley-Read-Hall (SRH) energy level with separate
electron and hole lifetimes and an adjustable trap energy level within the bandgap. The dialog box for specifying these
parameters for the current region can also be opened using a button on the toolbar. This toolbar button will appear
to be depressed if the electron or hole lifetime has been altered from its default value of 1 ms.

2
pn—n,

—E,/kT
! )+rp(n+nl-ee

Rsry = E, /kT) :

Ty (p T ;e

The trap level, Et, is specified with respect to the intrinsic level, which lies near the middle of the bandgap. The
electron and hole lifetimes specified at the top of the dialog box are the values corresponding to intrinsic material at a
temperature of 300 K.

Also listed in the bulk-recombination dialog box is the excess-carrier lifetime in low-level injection and the
corresponding diffusion length, for material with the background doping and reference temperature specified in the
dialog box. These calculated values include the effect of band-to-band and Auger recombination, the coefficients for
which are specified for the material's band structure in this region, and also the effects of background doping on the
SRH lifetimes as specified in the material recombination dialog.. To obtain a specific low-level-injection lifetime or
diffusion length, simply type the desired number in the space provided. PC1D will calculate the intrinsic electron and
hole lifetimes needed. Note that the properties of the material (band-to-band, Auger recombination, etc.) place an
upper limit on the achievable lifetime and diffusion length for a given background doping density.

Front/Rear Surface Recombination

The surface recombination model used by PC1D supplies a single Shockley-Read-Hall (SRH) energy level with
separate electron and hole lifetimes and an adjustable trap energy level within the bandgap. . The dialog box for
specifying these parameters for the front or rear surface of the current region can also be opened using buttons on
the toolbar. These toolbar buttons will appear to be depressed if there is recombination at that surface. When either
Sn or Sp is nonzero, the SRH surface recombination rate is given by

SnSp(pn - nlze)

~E,/kT E kT
Sp(p+nl-ee ! )+Sn(n+niee ! )

RS:

The trap level, Et, is specified with respect to the intrinsic level, which lies near the middle of the bandgap. The
electron and hole surface recombination velocities specified at the top of the dialog box are the values corresponding
to intrinsic material at the reference temperature specified in the dialog box The values of Sn and Sp entered are
modified for use in the recombination formula to reflect the actual device temperature and the surface doping density.
The extent of this modification depends on the parameters listed in the material recombination dialog box.

Also listed in the surface-recombination dialog box is the effective minority-carrier surface recombination velocity for
material with the surface doping at a temperature of 300 K. To obtain a specific minority-carrier surface recombination
velocity, simply type the desired number in the space provided. PC1D will calculate the intrinsic electron and hole
surface recombination velocities needed.

When high-level injection occurs at the surface, you can choose to either continue with the Shockley-Read-Hall model
(the “S” model), or you can choose instead to maintain the saturation current density at the surface at the same value
it had in low-level injection:

qS,S,

J =
—E, kT
Sp(peq +n;e ! )+Sn(neq +n;,e

o

Et/kT)'

The choice of high-level-injection model for surface recombination has no effect when the surface remains in low-level
injection.

Important Note on Surface Recombination

When there is more than one region in the device, the front and back surfaces refer to the current region, not the
device as a whole. The recombination rate calculated for the back surface of region 1 is added to the recombination
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rate calculated for the front surface of region 2 to get the total rate of recombination at the interface between the two
regions.
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Device Parameters (Device menu)

This group of selections from the Device menu are parameters that affect the device as a whole, as opposed to
influencing only one region.

Area

This command opens a dialog box for specifying the cross-sectional area of the device. The area can be specified in
the most convenient units, be that cm2, mm2, or um2. This area is the projected area of the device, unaffected by
surface texture. It is the area over which illumination intensity (watts/cm2) is figured.

Texture

This selection can be used to open a dialog box for specifying the details of surface texture on the front and/or rear
surface of the device. This feature is intended for devices with etched front surfaces that have a specific facet angle
with respect to the plane of the substrate. The cross-sectional area for current flow is larger at the textured surface
than at the back surface by the factor 1/cos(a), where "a" is the facet angle. The facet model assumes that the
cross-sectional area decreases with a Gaussian shape from its value at the surface toward the substrate value, with a
standard-deviation depth constant equal to one-sixth of the facet depth. The most important feature of the facet model
is that it incorporates the increased carrier recombination that occurs at or near a textured surface as a direct result of
the increased surface area. Note that (111) facets etched anisotropically into a (100)-oriented surface make a facet angle
of 54.74 degrees. The choice of facet angle and depth also affects the photogeneration profile, because it causes
photons to travel an oblique path through the device.

Front/Rear Surfaces

This selection opens a dialog box for either the front or rear surface of the device, indicating which of three
electrostatic models are to be used. The available models are Neutral, Barrier, and Charged. A Neutral surface is
assumed to have no net volume charge density at the surface. A surface with a Barrier has a net charge at the surface
due to band bending. You specify the barrier height in electron-volts (¢V). A positive value bends the bands
downward. A Charged surface also results in band bending near the surface. In this case, the density of charges
external to the device can be specified (charges/cm2). A positive density implies positive external charge, which bends
the bands downward, producing a negatively-charged region within the device. Although identical equilibrium band
bending can be obtained by specifying either a Barrier height or surface Charge, the two surface conditions differ
when excitation is applied. While the Barrier maintains a constant surface volume charge density, the Charged surface
maintains a constant surface electric field.

Circuit Connnections (Contacts submenu)

The Circuit connections option opens a dialog box for specifying the physical location of the device's ohmic contacts
to the external emitter, base, and collector source circuits. These locations are given as distances from the front surface
of the device. If a location is specified that is higher than the device width, then the rear surface of the device is used
for that contact. For contacts within the bulk of the device, the precise location of contact may be shifted slightly from
that specified so that the contact can be made at a node between finite elements. The default settings are an emitter
contact at x=0 (the front) and base and collector contact at x=10,000 um (the rear). You can also specify values for
internal series resistance associated with each of the three ohmic contacts. There is a mininum value of these
resistances of 1 micro-ohm for numerical-computation reasons. Any voltage drop across these internal series
resistances does affect the current-voltage behavior calculated and plotted for the device.

By default, the Emitter and Base contact are Enabled, and the Collector is Disabled. Specifying external source circuits
will have no effect unless the corresponding connection to the device for each source has been Enabled. At least one
contact should always be Enabled; otherwise, there is no voltage reference for the device and the solution may not
converge.

The concept of a contact in the middle of a device may seem strange, but this generalization is necessary to model
three-terminal devices. In a three-dimensional situation, the current for the middle contact (e.g. the base of a bipolar
transistor) is conducted to the active region of the device froma contact that is removed some distance perpendicular
to the active device dimension. Assuming that this remote contact is in a heavily-doped area that remains in low-level
injection, a voltage imposed on the contact shifts the majority-carrier quasi-Fermi potential from its equilibrium value
by an amount equal to the applied voltage. This shift in quasi-Fermi level can be assumed to be nearly constant
between the contact and the active region of the device, even when the active region is in high-level injection. A small
slope in the quasi-Fermi potential between the contact and the active region would result fromresistance in the
intervening layer. This can be modeled using the internal series resistance. PC1D assumes that all three contacts can
be treated as injection points for majority-carrier current at which the majority-carrier quasi-Fermi potential is shifted by
the applied voltage, less any drop across the internal resistance.

Internal Shunt Hements (Contacts submenu)

Four internal shunt circuit elements can be enabled (they are normally disabled). Each element can be a conductor,
diode, or capacitor. These elements can be connected between any two locations within the device. The precise

Page 82


http://www.processtext.com/abchlp.html

location of connection for the anode and cathode may be shifted slightly from the specified positions so that the
contact can be made at a node between finite elements. Conductors are specified in terms of their conductance
(inverse of resistance). Diodes are specified in terms of a saturation current and an ideality factor. Capacitors are
specified in terms of their capacitance.

The internal shunt elements can be used to represent three-dimensional effects found in real devices. For example,
junction leakage often occurs where the junction intersects the semiconductor surface. This can usually be modeled as
a combination of shunt conductance and a diode having an ideality factor of 2 or greater. The shunt diode can also be
used to model recombination that occurs in an area of the device not explicitly being solved. Attachment of internal
shunt elements may adversely impact the convergence speed of the solution, because these elements couple the
solution at widely different locations within the device, and this coupling is not fully accounted for in the
limited-bandwidth matrix used by PC1D to solve the semiconductor equations.

Reflectance

This selection allows you to specify the external optical reflectance for the front and rear surfaces, and the internal
optical reflectances for both surfaces. The internal reflectance can be different for the first encounter of light with that
surface than for subsequent encounters. Also, the internal reflectance at each surface can be either specular (polished)
or diffuse (lambertian). Internal reflectance at the interfaces between device regions composed of different materials is
not accounted for by PC1D.

For the external reflectance of the front or rear surface, a dialog box is opened which gives three options: Fixed,
Coated, or External. Fixed reflectance is constant for all incident wavelengths. The Coated option allows you to specify
the thickness and index of refraction for up to three optical coating layers, plus a baseline reflectance that is the same
for all wavelengths. Layer 1 corresponds to the first layer deposited while layer 3 is the last layer deposited. Thus light
must traverse the layers in reverse numerical order as it passes from the air into the device. Table 1 gives the index of
refraction for some common optical-coating materials for wavelengths in the visible spectrum. Facet angles are not
taken into consideration in the calculation of reflectance for a coated surface. If your front surface is textured, you
should either enter a Fixed reflectance or provide an external file containing reflectance data.

To minimize reflectance over a broad spectrum, the layers should be stacked in order of decreasing index of refraction
with the highest-index material adjacent to the device. The thickness of each layer should be one-quarter wavelength
within the material. A layer of Si3N4 would need to be about 75 nm thick to minimize reflectance at a wavelength of 600
nm. Note that some coating materials may absorb light, especially in the ultra-violet. PC1D does not take this effect
into account.

Table 1: Commonly Encountered Indices of Refraction
(non-stochiometric or undensified films will differ)

SiO2 silicon dioxide 1.46
Si3N4 silicon nitride 2.0
ZnS zinc sulfide 24
MgF2 magnesium fluoride 1.4
Al203 aluminum oxide 1.6
TiO2 titanium dioxide 25
Ta205 tantalum pentoxide 22
many organic films 1.4
window glass 1.5

External reflection files are standard ASCII files with a filename suffix REF. Each line in the file should contain two
numerical values, separated by one or more spaces or a tab. The first value on each line is a value of wavelength, in
nm. The second value on each line is the reflectance, normalized to unity. The maximum number of lines allowed is 200.
All values of the reflectance must be between 0 and 1, and the values of wavelength must increase monotonically. If
the range of wavelengths provided is less than is required for the solution of a problem, the reflectance for the first (or
last) wavelength is used for all smaller (or larger) wavelengths.
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Graph menu commands

The Graph menu provides commands that control which graph is available for inspection using the Interactive-Graph
view. It also provides a command for resetting the graphs in the Four-Graph view to their default values, and a
command for copying data to the Windows clipboard.

Spatial Graphs This selection provides a menu of choices for interactive graphs that
display spatial information (functions of position). If the information you
seek is not included in this list, many more functions are available for a
Defined Graph.

Temporal Graphs  This selection provides a menu of choices for interactive graphs that
display temporal information (functions of time). Some functions not
included in this list can be accessed for a Defined Graph.

Defined Graph This selection opens a dialog box which allows you to specify xand y
functions for any graph, selected from 75 available functions. These
functions provide a much more detailed look at the operation of the
device than is available from the predefined graphs.

Auxiliary Graph This command opens a dialog box for selecting a spatial function and a
position within the device. Once this information has been entered, any
subsequent transient solutions will store the value of that function at
that position as a function of time. The data can then be viewed as using
the Auxiliary selection from the Temporal Graph menu.

Experimental This command opens a dialog box for selecting data from an external file.
The data can be viewed on a user-defined graph with “Experimental
Data” as one of the data types. The experimental data file should be a
tab-delimited text file. No unit conversion is performed on this data — it’s
your responsibility to ensure that the data is sensible.

Default Graphs This command is only active in Four-Graph view, in which case it resets
the four graphs to the default selections. When graphs are chosen for
interactive examination, they are added to the four-graph view,
displacing the default graphs that were there initially. This is done to
make it easy to return to those graphs, by double-clicking on them in the
Four-Graph view. However, if your attention shifts to a new issue, you
will likely want to restore the default graphs, which are chosen to
provide a balanced overview of the device's operation.

Previous History =~ Whenever a simulation is completed, the current interactive graph is
Graph, Next History saved (to a maximum of 100 graphs). You can view these ‘history’
Graph graphs using the Graph menu or the Page Up/Page Down keys.

By flipping through these graphs, you can visually compare simulation
results. This feature is especially useful for batch runs.

Retain zoom for If this is OFF, the previous (history) graphs will be auto-scaled, so that

history graphs they are fully visible. Unfortunately, this means that the axes can
change, making it hard to compare different results. If Retain Zoom is
ON, the axes will not change. You can zoom into a part of the curve, then
see how that portion differs from other simulation results. You can zoom
out to see the full graph.

Reset history graphsRemoves all the accunulated history graphs, allowing you to start
afresh.

Copy Data This command for copying data to the Windows clipboard for export to
other programs is enabled in two situations. First, it is enabled for the
Interactive-Graph view, in which case this command copies the data that
is currently displayed on the graph. Second, it is enabled in Parameter
view if Batch Mode is being used, in which case this command copies
the data from the batch table to the clipboard.
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Spatial Graphs (Graph menu)

This group of graphs displays information as a function of position in the device, measured as distance from the front
surface. Prior to obtaining an equilibrium solution, these graphs display data at each point corresponding to
charge-neutral local-equilibrium conditions, with no space-charge region. After an equilibrium solution has been

obtained, all of the graphs display physically meaningful values.

Doping Densities

Carrier Densities

Electrostatic
Potential

Electric Field

Charge Density

Current Density

Generation &
Recombination

Carrier Mobilities

Energy Bands

This graph plots the log of donor and acceptor doping densities as a
function of position. The solid line is for donors, the dashed line for
acceptors. PC1D imposes a minimum non-zero doping density of
between | and 3 cm-3 for both donors and acceptors. PC1D assumes
that all donors and acceptors are ionized.

This graph plots the log of electron and hole densities as a function of
position. The solid line is for electrons, the dashed line for holes.

This graph plots the electrostatic potential as a function of position. The
zero of potential corresponds to intrinsic Region-1 material in
equilibrium. In equilibrium, n-type material has a positive potential, while
p-type material has a negative potential.

This graph plots the electric field as a function of position. The electric
field in PC1D is uniform within each element and is not usually
continuous at the nodes. For this graph, the value shown at each node
is a linear interpolation between the values in the two elements adjacent
to each node, assuming those values to apply at the mid-point of each
element.

This graph plots the charge density as a function of position. The
charge density at each node is equal to the hole and donor densities
minus the electron and acceptor densities, multiplied by the elementary
charge constant.

This graph plots the current density (amps per cm2 of cross-sectional
area) for electrons and holes. The solid line is for electrons, the dashed
line for holes. Also shown, as a dotted line, is the total current density,
which is the sum of the electron and hole components. The current
density in PC1D may be discontinuous between adjacent elements if
there is an interface recombination velocity at a node, or if a circuit
element (either external or internal) is connected at the node. In such
cases, this graph will display the current densities just to the left of the
node; except at x=0, where the values shown are the current densities
just to the right of that node. Note that at textured surfaces the total
current density will not be uniform, because the cross-sectional area for
current flow is itself a function of position.

This graph plots the cumulative photogeneration and recombination as a
function of position. The solid line is generation, the dashed line is
recombination. The values shown are the total integrated quantities from
the front surface to each node in the device, including any
recombination at that node. Thus, a non-zero value of Recombination at
x=0 means that there is surface recombination at the front surface. This
graph is particularly useful for understanding where the recombination
in the device is occurring, since the fraction of the total can be
immediately observed by comparing the increase in the plot over a given
region to the increase across the entire device. The units in this graph
(inverse seconds) can be multiplied by the elementary charge constant
to express these quantities in units of current.

This graph plots the mobilities of electrons and holes as a function of
position. The solid line is for electrons, the dashed line for holes. When
the variable-mobility model is used, the graph shows the resulting
mobility for each carrier at each point based on the doping density at
that point and the temperature of the device. Carrier diffusivities can be
obtained from this plot by multiplying by the thermal voltage.

This graph plots the energy-band edges and quasi-Fermi energies as a
function of position. The solid line is the conduction-band edge, the
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dashed line is the valence-band edge, the dotted line is the electron
quasi-Fermi energy, and the dot-dashed line is the hole quasi-Fermi
energy. The zero of energy is taken as the equilibrium position of the
Fermi energy, and positive energy refers to increasing electron energy
(decreasing potential). The quasi-Fermi potentials (and hence energies)
are defined at each node and thus are always continuous between
adjacent elements.

Carrier Velocities ~ This graph plots the average group velocity of electrons and holes as a
function of position. The solid line is for electrons, the dashed line for
holes. Positive velocity is toward the right, away from the front of the
device. Current densities are proportional to the product of the velocity
times the carrier density. The same conditions apply as described above
for Current Density when there is a discontinuity in current at a node.

Diffusion Length This graph plots the minority-carrier diffusion length as a function of
position. This is equal to the square root of the minority-carrier
diffusivity times the minority-carrier lifetime, where the lifetime is equal
to the excess minority-carrier density divided by the local bulk
recombination rate. For equilibrium conditions this ratio would be
undefined, so in that case the recombination rate is calculated for a
minority carrier density increased by 1% over the equilibrium value.
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Temporal Graphs (Graph menu)

This group of graphs displays information as a function of time. While they are primarily useful for transient solutions,
they can also be helpful for determining certain values from steady-state calculations, in which case they will display
data only for a single point in time (just prior to t=0). One of these graphs, Quantum Efficiency, is different from the

others in that it displays its data versus illumination wavelength.

Auxliary

Base Current

Base Voltage

Base I-V

Base I-V/ Power

Collector Current

Collector Voltage
Collector I-V

If an auxiliary spatial function has been previously set up using the
Auxiliary dialog box accessible from the Graph menu, then this graph will
plot that auxiliary data versus time.

This graph plots the current into the base connection versus time. The
base-contact selections are enabled only if the base contact is enabled
and defined for this device.

This graph plots the voltage at the base connection versus time. The
voltage at the node where connection is made is the majority-carrier
quasi-Fermi potential at that node. Note that this graph is not equal to
the base source voltage when a source series resistance is specified.
However, any voltage drop across the internal series resistance of the
base connection is incorporated into this graph.

This graph plots the base current versus the base voltage, with each
(xYy) pair corresponding to a time step. The left-right cursor keys in
parametric graphs such as this correspond to advancing the time steps,
not the left-right orientation of the data.

This graph combined the Base I-V data with a plot of base power into

the device as a function of base voltage. The ordinate units are mixed,
and correspond to amps for current and watts for power. Note that the
Base Power is the product of the base current and the base voltage.

Like Base Current, but for the Collector contact. The collector-contact
selections are enabled only if the collector contact is enabled and
defined for this device.

Like Base Voltage, but for the Collector contact.
Like Base I-V, but for the Collector contact.

Collector I-V/ PowerLike Base I-V/Power, but for the Collector contact.

Shunt Element
Current

Shunt Element
Voltage

This graph plots the current through each of the four shunt elements
versus time. Positive current flow corresponds to current from the anode
to the cathode. These elements are defined in the Device Menu using
the Contacts:Internal dialog box This selection is disabled if none of the
shunt elements are enabled.

This graph plots the voltage across each of the four shunt elements, for
the anode with respect to the cathode, versus time. This selection is
disabled if none of the shunt elements are enabled.

Quantum Efficiency This graph plots the spectral performance of the device versus

illumination wavelength. This graph functions properly only when the
only illumination source is the Primary source and that source is set for a
monochromatic spectrum (usually a monochromatic scan). A suitable
excitation file for preparing data for this graph is provided with PC1D as
scan-qe.exc. There are three curves plotted. The solid line is the internal
quantum efficiency, defined as the number of electrons collected per
photon not reflected. Reflected photons include both those reflected
directly at the incident surface, and those that enter the device but
subsequently escape out of the incident surface. The dashed line is the
external quantum efficiency, defined as the number of electrons collected
per photon incident. The dotted line is the total reflectance, which is the
sum of the incident-surface reflectance and the incident-surface escape
reflectance.
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Defined Graphs (Graph menu)
This dialog box can also be accessed by double-clicking outside the plot area of an interactive graph.

This selection opens a dialog box which allows you to specify x and y functions for the currently selected
graph.

Up to four y functions can be plotted against any x function, selected from 75 available functions. The abscissa and
ordinate axes can each be scaled either linearly or logarithmically, and you can specify a title for the graph.

Following are descriptions of the available plot functions, separated into Spatial and Temporal quantities. You can plot
any spatial function against any other spatial function, or any temporal function against any other temporal function.
Experimental data can be plotted against any function.

When you first access this dialog box, it will show the settings for the current Interactive Graph. This makes it easy to
add an additional curve to an existing graph. If you’d prefer to start a new graph from scratch, use the radio buttons to
toggle between ‘Spatial’ and ‘“Temporal’ graphs. This will set all curves to ‘(none)’, and will clear the title.

Spatial Functions

Acceptor Doping  The net acceptor doping density due to the sum of background and
Density diffused p-type dopants. All of these dopants are considered to be
electrically active.

Bulk Recombination The volumetric recombination rate at each node, including SRH
Rate recombination (as influenced by temperature and doping), band-to-band
recombination, and Auger recombination.

Charge Density The volumetric charge density, given by the densities of electrons,
holes, donors, and acceptors.

Conduction Band The effective edge of the conduction band, modified from the actual
Edge edge by electrical bandgap narrowing caused by heavy donor doping.

Conductivity The volumetric conductivity at each node is given by the sum of the
product of electron density and mobility plus the product of hole
density and mobility. High-field mobility reduction is not included.

Convergence Error This is the change in normalized potential determined for each node as
the result of the previous iteration of the matrix equation solution. The
actual change in potential is limited by the potential clamp, which is
normally set between 0.1 and 10. The largest value of this error for any
node determines the length of the convergence bar located in the
status-bar area of the window. The problem is considered solved when
the largest error drops below the convergence limit specified in the
Compute[Numerical dialog box.

Cross-Sectional This is the cross-sectional area at each node through which the electron
Area and hole currents must flow. This will be nonuniform in the vicinity of
surface texture.

Cunulative The integrated conductivity, starting at the front surface. This function

Conductivity is zero at the front surface, and at the back surface is equal to the net
total sheet conductivity of the device. High-field mobility reduction is
not included.

Cumulative Excess The integrated conductivity, starting at the front surface, relative to its

Conductivity value at equilibrium. High-field mobility reduction is not included. At the
back surface, this function gives the net total increase in conductivity
for the device. This function is useful for simulating photoconductance
measurements.

Cumulative The rate of generation of electron-hole pairs due to external

Photogeneration ~ photo-excitation, measured as a cumulative function starting at the front
surface of the device. This function is zero at the front surface, and its
value at the back surface is the total photogeneration rate for the entire
device.
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Cumulative
Recombination

Dielectric Constant

Diffusion Length

The recombination rate of excess electrons and holes, calculated as a
cumulative function starting at the front surface of the device. In
additional to bulk recombination, this function includes surface
recombination and interface recombination between regions. Its value at
the front surface is the front-surface recombination rate, and its value at
the back surface is the total rate of recombination for the entire device.

This is the permittivity of the material at each node, normalized to the
permittivity of free space. It is the proportionality constant that relates
charge density to electric field.

This is the minority-carrier diffusion length, defined as the square root of
the diffusivity times minority-carrier lifetime. The lifetime is calculated as
the excess carrier density divided by the recombination rate, and the
diffusivity is the mobility times the thermal voltage. High-field mobility
reduction is considered. In equilibrium, the minority-carrier density is
increased by 1% prior to calculating the recombination rate, which
includes recombination due to SRH traps, band-to-band, and Auger
processes.

Distance from Front The position of each node, measured as a distance from the front

Donor Doping
Density

Electric Field

Electron Current

Electron Current
Density

Electron Density

Electron Diff.
Current Density

Electron Drift
Current Density

Electron Mobility

surface. This is the usual function used for the abscissa.

The net donor doping density due to the sum of background and
diffused n-type dopants. All of these dopants are considered to be
electrically active.

A weighted average of the electric field in the elements to either side of
each node (except the end nodes, which are one-sided). The weighting
favors the smaller adjoining element, as if the field in each element was
assigned to its midpoint, and the resulting value at the interface node
calculated as a linear interpolation.

This is the current of electrons past each node.

The areal density of electron current flow. Note that since electrons have
negative charge, they move in a direction opposite to the sign of their
current flow.

The density of mobile electrons.

The electron current density can be broken into drift and diffusion
components. The diffusion component is given by the product of the
mobility and the gradient of the density of mobile electrons. This
function is actually calculated by subtracting the drift component from
the total electron current density.

The electron current density can be broken into drift and diffusion
components. The drift component is given by the product of the
mobility, the density of mobile electrons, and the electric field. Each of
these terms is determined as they are for plots of these functions,
including high-field mobility reduction.

The mobility of electrons, which is affected by temperature and doping
density of both Donors and Acceptors. It is also reduced by high
electric fields which would induce velocity saturation.

Electron Quasi-FermiThe quasi-Fermi energy for electrons is a non-equilibrium version of the

Energy
Electron Velocity

Electrostatic
Potential

Energy Gap
(electrical)

electro-chemical potential which characterizes the statistical
thermodynamics of the mobile electrons.

The velocity of mobile electrons. This is given by the electron current
density divided by the density of mobile electrons.

The electrostatic potential, where zero equals the potential of intrinsic
material in equilibrium. In equilibrium, positive potentials are associated
with n-type material, negative with p-type material.

The effective energy gap, which is modified from the material’s intrinsic
energy gap by electrical bandgap narrowing effects caused by heavy
doping. The amount of bandgap narrowing is directly related to the
increase in the pn product in equilibrium.
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Excess Charge The volumetric charge density at each node measured relative to its
Density value at equilibrium.

Excess Conductivity The volumetric conductivity at each node relative to its value at
equilibrium, including contributions from both electrons and holes.
High-field mobility reduction is not included.

Excess Electron The density of mobile electrons in excess of the value at equilibrium.
Density

Excess Electron This is the density of mobile electrons in excess of the equilibrium value
Density Ratio at each node, divided by the equilibrium value at that node. The

resulting ratio is dimensionless.

Excess Electrostatic The electrostatic potential at each node measured relative to its value at
Potential equilibrium.

Excess Hole Density The density of mobile holes in excess of the value at equilibrium.

Excess Hole Density This is the density of mobile holes in excess of the equilibrium value at
Ratio each node, divided by the equilibrium value at that node. The resulting
ratio is dimensionless.

Excess pn Product The excess pn product is the product of the density of mobile holes and

Ratio mobile electrons, in excess of the equilibrium value of this product at
each node. The ratio is formed by dividing this value by the equilibrium
value of the pn product at that node. The resulting ratio is
dimensionless.

Generation Rate The volumetric rate of generation of electron-hole pairs due to external
photo-excitation.

Hole Current This is the current of holes past each node.
Hole Current The areal density of hole current flow.
Density

Hole Density The density of mobile holes.

Hole Diff. Current  The hole current density can be broken into drift and diffusion

Density components. The diffusion component is given by the product of the
mobility and the gradient of the density of mobile holes. This function is
actually calculated by subtracting the drift component from the total
hole current density.

Hole Drift Current  The hole current density can be broken into drift and diffusion

Density components. The drift component is given by the product of the
mobility, the density of mobile holes, and the electric field. Each of these
terms is determined as they are for plots of these functions, including
high-field mobility reduction.

Hole Mobility The mobility of holes, which is affected by temperature and doping
density of both Donors and Acceptors. It is also reduced by high
electric fields which would induce velocity saturation.

Hole Quasi-Fermi  The quasi-Fermi energy for holes is a non-equilibrium version of the
Energy electro-chemical potential which characterizes the statistical
thermodynamics of the mobile holes.

Hole Velocity The velocity of mobile holes. This is given by the hole current density
divided by the density of mobile holes.

Intrinsic Conc. The square-root of the pn product in equilibrium. Nominally, this equals

(effective) the concentration of electrons and holes in intrinsic material held in

equilibrium, but heavy doping can increase the pn product, and hence
the effective intrinsic carrier concentration.

Minority Carrier This is the excess minority carrier density divided by the recombination

Lifetime rate. In equilibrium this ratio is undefined, in which case the minority
carrier concentration is increased by 1% before calculating the
recombination rate. The minority carrier is whichever carrier (electrons
vs. holes) currently has a lower density. If the lifetime calculated this
way is ever negative, it is replaced with zero.

Normalized Excess The excess pn product is the product of the density of mobile holes and
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pn Product mobile electrons, in excess of the equilibrium value of this product at

each node. A ratio is formed by dividing this value by the equilibrium
value of the pn product at that node. The function is then normalized by
dividing the value at each node by the largest value found in the device.
The resulting ratio is dimensionless and has a maximum value of unity.
This function when plotted for forward bias without photoexcitation is
equal to the probability that a carrier pair photogenerated at that location
would be collected by the external circuit under short-circuit illumination
conditions.

Resistivity The resistivity of the material at each node is equal to the inverse of the
conductivity, which is given by the sum of the product of electron
density and mobility plus the product of hole density and mobility.
High-field mobility reduction is not included in this function.

Total Current This is the sum of currents due to electrons and holes. In steady state,
this function should be uniform between external contacts. During
transients, nonuniformities will emerge in regions where a net charge
density is accumulating or depleting.

Total Current The sum of the electron and hole current densities.
Density

Vacuum Energy The energy an electron would have if a void were formed in the device at
that point and the electron were to escape into that void. It is equal to
the energy of the conduction band edge plus the electron affinity of the
material.

Valence Band Edge The effective edge of the valence band, modified from the actual edge by
electrical bandgap narrowing caused by heavy acceptor doping.

Temporal Functions

Auxiliary If an auxiliary spatial function has been previously set up using the
Auxiliary dialog box accessible from the Graph menu, then this function
will plot that auxiliary data.

Base Current The current into the base contact to the device. This current is injected
as majority-carrier current at the node nearest to the specified contact
location.

Base Power The product of the voltage at the base contact times the current into this

contact. This power is positive for energy flow into the device, and
negative for energy flow out of the device.

Base Voltage The voltage at the base contact to the device. This differs from the base
source voltage when a series source resistance has been specified in the
Excitation|BaseCircuit dialog. It differs from the majority-carrier
quasi-Fermi potential at the location of the base contact only by an
amount equal to the voltage drop across the internal series resistance
associated with the contact, as specified in the Device|Circuit|Contacts
dialog.

Collector Current  The current into the collector contact to the device. This current is
injected as majority-carrier current at the node nearest to the specified
contact location.

Collector Power The product of the voltage at the collector contact times the current into
this contact. This power is positive for energy flow into the device, and
negative for energy flow out of the device.

Collector Voltage  The voltage at the collector contact to the device. This differs from the
collector source voltage when a series source resistance has been
specified in the Excitation|CollectorCircuit dialog. It differs from the
majority-carrier quasi-Fermi potential at the location of the collector
contact only by an amount equal to the voltage drop across the internal
series resistance associated with the contact, as specified in the
Device|Circuit|Contacts dialog.

Elapsed Time The total elapsed time since the start of the transient solution. This is
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External Quantum
Efficiency

Internal Quantum
Efficiency

Inverse IQE

IQE adjusted for
light bias

Pri-Surface
Absorption Length

Pri-Surface Escape

Pri-Surface
Reflectance

Pri-Surface
Refractive Index

Pri-Surface Total
Reflectance

Primary Source
Wavelength

Shunt ## Current

Shunt ## Voltage

the usual value for the abscissa in temporal graphs. The steady-state
solution is represented as occurring at negative time, with the start of
the transient at t=0.

This function plots the rate that charge carriers are collected by the base
circuit divided by the rate that photons are incident on the device from
the primary source. To properly represent EQE, the problem must have
been set up with the base circuit at short circuit and the primary
illumination set to scan a range of monochromatic wavelengths.

This function is similar to the External Quantum Efficiency, except that
the result is divided by 1-R, where R is the sum of the Pri-Surface
Reflectance and Pri-Surface Escape. IQE represents the rate at which
carriers are collected by the external circuit divided by the net rate that
photons enter the surface of the device. Here, “net rate” means the rate
of incidence minus the rate of exit. If a secondary light source is present,
use ‘IQE adjusted for light bias’ instead.

This function simply plots the inverse of the Internal Quantum
Efficiency. Plots of inverse IQE versus Absorption Length are commonly
used to extract information about the diffusion length in the device.

This is the Internal Quantum Efficiency, but remains valid when the
device is being illuminated by a secondary (constant) light source.

This function plots the absorption length in the material for
monochromatic illumination from the primary source. When the device is
composed of multiple materials, the material at the surface onto which
the primary source is incident is used. This function is defined only
when the problem s set up with primary source illumination configured
to scan a range of monochromatic wavelengths.

This function plots the fraction of incident photons that enter the device
initially, but which are then reflected internally and escape from the
surface of the device onto which the primary source illumination is
incident. It is defined only when the problemis set up with primary
source illumination configured to scan a range of monochromatic
wavelengths.

This function plots the fraction of incident photons that are reflected
directly from the surface of the device onto which the primary source
illumination is incident. It is defined only when the problem is set up
with primary source illumination configured to scan a range of
monochromatic wavelengths.

This function plots the refractive index of the material for monochromatic
illumination from the primary source. When the device is composed of
nultiple materials, the material at the surface onto which the primary
source is incident is used. This function is defined only when the
problem s set up with primary source illumination configured to scan a
range of monochromatic wavelengths.

This is just Pri-Surface Reflectance + Pri-Surface Escape.

The wavelength (in free space) of light incident on the device from the
primary source. This function is defined only when monochromatic
illumination has been specified.

This is a set of four function that plot the current through the four
internal elements defined using Device|Circuit|InternalElements. The sign
of the current corresponds to current entering the element at its anode
and leaving at its cathode.

This is a set of four functions that plot the voltage across the four
internal elements defined using Device|Circuit|InternalElements. The sign
of the voltage corresponds to the voltage of the element anode with
respect to its cathode.
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NUMERICAL METHOD

This section describes the isolated-element approach used within PC1D to obtain rapid, accurate
solutions of the semiconductor transport equations. The emphasis in this program has been on reliable
convergence for a broad range of doping profiles and boundary conditions.

The five semiconductor equations (Section A.1) can be readily reduced to three equations in three
unknowns. There are several options for selecting the solution variables; none appears to have a
significant advantage. For PC1D we have chosen the electrostatic potential, y, and the electron and
hole quasi-Fermi potentials, ¢n and ¢p. Three expressions are required at each interface between
elements. Poisson's equation minimizes the total electrostatic energy in the adjoining elements, and both
electron and hole currents must be continuous across each interface.

A.1 Fundamental Equations

The numerical method of PC1D uses the two-carrier semiclassical semiconductor transport equations.
These equations are derived from the Boltzmann transport equation with the following assumptions: the
two carriers flow independently (no carrier-carrier scattering), both carrier populations remain in thermal
equilibrium with the surrounding crystal lattice (no hot carriers), the mobility of carriers is isotropic, and
the structure of the energy levels available to electrons is not significantly affected by excitation (rigid
bands). The effect of magnetic fields is also neglected and the device temperature is assumed to be
uniform. The resulting equations for electron and hole current density (Jn, Jp) are commonly written in
terms of the electron and hole density (n, p), the electron and hole mobility (uz, pp), and the electron
and hole quasi-Fermi energies (EFn, EFp).

‘]n = M n nVE Fn

J,=Wn,pVE,, A1)
The quasi-Fermi energies relative to their corresponding energy band define which of the energy states
available to electrons are filled by carriers from each population, thereby determining the local
concentration of both carriers. For non-degenerate material, the Boltzmann exponential approximation to
the Fermi distribution function can be utilized:

—(E.—Ep )/ kT
n:Nce ( c Fn)

~(Ep,~E, )/ kT

=N,e "
p=2Ny (A2)
Here Nc and Nv are the effective density of states in the conduction and valence bands. Ec and Ev are
the energy levels of the two band edges. The effects of degenerate doping can be included in this
Boltzmann-like form by modifying Ec and Ev. Degeneracy due to high injection levels is not included in
this treatment.

Define the quasi-Fermi potentials (¢n, ¢p) as the separation of the quasi- Fermi energies relative to the
equilibrium Fermi energy at some selected reference location. For PC1D, this location is taken as x=0.
The position of the two band edges in Eq. (A.2) relative to this reference energy depends on the
electrostatic potential and any spatial variation in the band structure. To describe variations in the band
structure, two band-edge potentials are introduced, V'z and Vp. These potentials represent the shift
(toward the centre of the bandgap) of the conduction and valence band edges with respect to the
conditions at the reference location, after accounting for electrostatic effects. These shifts may be caused
by spatial variations in material composition or bandgap narrowing due to heavy doping. Specifically, for
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bandgap Eg, electron affinity 7, effective conduction (valence) band density of states Nc (Nv ), and
conduction (valence) bandgap narrowing AEgc (AEgv),

(NJ”R%

CE,~E,. y-
q NW q q (A.3)

where ¢ is the magnitude of the elementary electronic charge. The material (conduction and valence
band) properties at the reference location can serve to establish a convenient zero reference for the
electrostatic potential. Let zero electrostatic potential correspond to neutral intrinsic conditions in this
material. Introducing these definitions into Eq. (A.2) produces a new pair of Boltzmann-like expressions
for n and p,

v /kT
n = nireq(\v+ n0,)
q(=y +Vpré,)/ kT

p — nire

Here, nir is the intrinsic carrier concentration at the reference location.

(A4)

Combining Egs. (A.1) and (A.4) it is possible to eliminate #» and p, expressing the two unknown current
densities in terms of the two unknown quasi-Fermi potentials and the unknown electrostatic potential. All
other parameters can be expressed in terms of these unknown quantities for a given device structure,
providing two equations for five unknowns.

Two additional equations can be generated by accounting for the fate of all electrons and holes that enter
a given volume of space. These continuity equations account for flow into the volume, creation of
carriers within the volume (generation), and annihilation of carriers within the volume (recombination).

8n:V0Jn+GL_Un
ot q

VelJ
P _ ~+G,-U,
ot q

(A.5)
Here GL is the volume generation rate of electron-hole pairs due to the absorption of light
(photogeneration), and Un, Up are the net volume recombination rates for electrons and holes.

The photogeneration model in PC1D includes a number of sophisticated features, including light trapping
and free-carrier absorption. It does not consider the generation of multiple carrier pairs by energetic
photons, two-photon absorption processes that use a trap level as an intermediate step, or absorption of
photons created during radiative recombination. PC1D also does not include generation of carriers due
to impact ionization, and thus will not predict avalanche breakdown.

A consequence of the two-carrier model is that electrons and holes are always created and annihilated in
pairs, so that Un= Up= U. This approximation is valid only for high-quality material in which the
concentration of occupied trap states is small compared with the carrier populations. The net
recombination (U) can, in turn, be expressed in terms of the three unknown potentials (y, ¢n, ¢p). The
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recombination model includes trap-assisted, Auger, and band-to-band processes. Other factors must
be neglected for reasons of computational efficiency, including changes in the trap cross-sectional area
or energy level as a function of occupation state, and the effect of traps distributed throughout the
bandgap.

The addition of Eq. (A.5) makes it possible to eliminate Jn and Jp as unknowns, leaving two equations in
the three unknown potentials. Poisson’s equation of electrostatics provides the third and final
independent equation.

Ve(eV¥)=—p (A.6)

where p 1s the volume charge density and ¢ is the permittivity. Contributions to the charge density
include the electron and hole densities and the concentration of ionized donor and acceptor impurities.
The two- carrier model neglects the charge associated with trap states located within the bandgap.
PC1D assumes that all of the available dopants are ionized. This is an adequate assumption at room
temperature and above, especially since the true dopant concentration is rarely known with great
accuracy. At lower temperatures, the user must adjust the doping profiles to represent only the ionized
dopant density.

As with any set of differential equations, boundary conditions represent an essential component in
defining a unique solution. For the semiconductor transport equations, three boundary conditions are
required at each external surface. A variety of boundary conditions can be used. Most analytical models
assume that (1) the majority-carrier concentration is fixed at its equilibrium value, (2) the minority-carrier
concentration is related to the minority-carrier current density by a surface recombination velocity, and
(3) the surface electrostatic potential is shifted from its equilibrium value by an amount equal to the
externally-applied voltage. These conditions are appropriate when all surfaces are heavily doped and
electrically contacted, either directly or indirectly.

A more general set of boundary conditions is used in PC1D to accommodate lightly doped and insulated
surfaces. The three boundary conditions at each surface are based on (1) injected current density, (2)
surface recombination, and (3) surface electrostatic potential. The injected total current density is zero at
insulated surfaces, and is controlled by the external circuit at contacts. PC1D provides two surface
recombination models: a Shockley-Read-Hall recombination velocity model that permits separate
electron and hole velocities through a trap level located anywhere in the bandgap, and a saturation
current density model that gives a recombination rate proportional to the excess pn product at the
surface. Three boundary conditions are available for the surface electrostatic potential: neutral surface
charge density, the surface charge density remains at its equilibrium value, or the surface electric field
remains at its equilibrium value. Constant surface charge density is appropriate at metal-semiconductor
contacts, including Schottky contacts, whereas constant surface electric field is more appropriate at
insulated surfaces.

At electrical contacts, PC1D allows the amount of injected current to be determined, in part, by the
device being simulated. A Thevenin-equivalent circuit is attached to each electrical contact, consisting of
a voltage source, series resistance, and external shunt elements. By varying the source resistance from a
small value to a large value, the entire spectrum of boundary conditions ranging from fixed-voltage to
fixed-current can be simulated.

A complication in applying the injected-current boundary condition arises when the contact itself is not a
part of the solution region. It is often the case that a significant distance may lie between the contact and
the solution region. Contacts to practical devices are made to heavily-doped material, so one can
generally assume that the injected current will enter the solution region as majority-carrier flow spread
throughout the region that matches the dopant type at the contact. To simplify matters, PC1D
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concentrates this majority-carrier current into a single injection point. The resulting electrostatic potential
shift at the point of injection presumably causes a similar shift in the electrostatic potential near the
contact. There will be a substantial difference, however, if the point of current injection in the solution
region is in high-level injection. The difference in injection levels between the solution region and the
contact produces an electrostatic potential difference across the intervening material, even when no
current is flowing. For this reason, it is better to use the majority-carrier quasi-Fermi potential to
determine the voltage at contacts. In the heavily doped material adjacent to the contact, the
majority-carrier quasi-Fermi potential must shift in unison with any shift in the electrostatic potential in
order to maintain a fixed volume charge density at the surface. Thus, the majority-carrier quasi-Fermi
level is a valid indicator of the contact voltage, with the advantage that it does not differ significantly
between the solution region and the contact. What difference might exist will be proportional to current
and can therefore be modelled using the external series resistance.

A.2 Discretization

The first step in the numerical solution of the semiconductor equations described in Section A.1 is the
discretization of the device, both in time and space. PC1D is a quasi-one-dimensional model, so the
device is spatially divided into a finite set of M elements along a solution dimension "x", which
approximately follows the direction of current flow in the device and is not necessarily a straight line. The
dividing point between any two elements is called a node. The nodes are numbered from zero at the left
boundary to M at the right. Subscripts of j or k are used to denote values at the jz4 or kth nodes,
respectively. The cross-sectional area for current flow is a function of x, with a value Ak assigned to
each node.

Poisson's equation is satisfied within this discrete space of elements by minimizing the total electrostatic
energy of the system, We.

teloy | h
WQ:IE{E} d)ﬁ!p yd :

0 (A.7)

where w is the width (thickness) of the device. A minimization of this functional with respect to , for a
given charge distribution, p, gives the electrostatic potential. This minimization is achieved in a discrete
sense by approximating v, p, and €. Both y and p are given a linear spatial variation within each
element. The permittivity, €, is assumed to be uniform within each element. Setting the differential energy
to zero yields the following discrete equation at each internal node &:

Poisson's Equation:

. A+ A4 Ay e A+ A Ay _
2 Ax, 2 Ax,
P A +2p, (A +Ax ) A, +p, A A,
6 (A.8)

where g+ and g- refer to the permittivity of the elements on the right and left sides of the node,
respectively. In Eq. (A.8), a delta notation is used to refer to the difference in a value across an element;
thatis, Ayk = yk+1 - yk, and Ayk-1 = yk - yk-1.

A second discrete equation at each node is based on the transport equation for electrons. Start with a
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quasi-one-dimensional version of Eq. (A.1), which gives the electron current, In, in the direction of the
solution dimension.

I(x)a, =-qu,(x,E)n(x) A(x) V¢, (x) (A.9)

The mobility in Eq. (A.9) is electric-field dependent. The model used for this dependency is

B(x, E) = p(x.0)/{1+[n(x.0)E /v, (x).} (A.10)

where E = - V 1s the electric field intensity and vsat is the high-field saturation velocity, which may be
different for electrons and holes. The denominator of Eq. (A.10) is assumed to be uniform within each
element.

Define a modified electric potential, n(x).

E)A
(1) =y (0)+ 7, () 4 A BB
q A, , (A.11)
where ur and Ar are arbitrary fixed reference values for mobility and area. Substitute the potentials of
Eq. (A.4) for n in Eq. (A.9) and rewrite the expression in terms of the modified potential of Eq. (A.11).

I,(x)a, =—qu,n, A, Vo, (x)e %[&g(x)fmx)
, (A.12)

Eq. (A.12) can be rearranged so that the quasi-Fermi potential is the only position-dependent value on
the RHS of the equation.

_qE.m(X)/k T_ _q¢n(x)/k
[, (x)e a,=q n; RVe (A.13)
where Dr = urekT/q defines the reference diffusivity. A contour, or path, integral can be applied to both
sides of this equation. The contour is taken across a single element, following the solution dimension x

from the node at xk to xk+1.

IIH(X)e—qén(x)/k az od =g rnmrj‘ve—qq)n(x)/k dd
: ¢ (A.14)

Xit1

I I (x)e—éﬁ.,n(x)/k d‘ :g npﬁfl [€_q¢”(xk)/k Ze_q%(xkﬂ)/k ];
n r r
" (A.15)

The value of this approach is now apparent. To complete the integration on the LHS of Eq. (A.15), it is
only necessary to make assumptions regarding the spatial variation of two well-behaved variables: /n
and xn. No assumption regarding the spatial variation of on was necessary. Since the carrier
concentration, n, depends on both x» and ¢n, this is equivalent to saying that no constraints have been
imposed on the spatial variation of #» within the element. If we assume that both x»# and /n vary linearly
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within each element, the integral can be performed to produce a direct expression for the electron
current at the left edge of the element (node xk). Letting 3 be the inverse thermal voltage, g/kT, the
following discrete equations result.

Electron Current Transport:

1,(x)=-AL (B AS,)

v Lo ’AH;A)’[ Z(B AEe  PBE,(x.p)—0,(x.) —)Z(-B AE))e  BE,(x, p-0,(£) )

(A.16)
where Z(u)=u/(eu-1) and Y(u)=(1-Z(u) ) /u

In Eq. (A.16), the net electron current leaving the element, Aln, is equal to the total rate of
recombination within the element, minus the total rate of generation, plus the rate that electrons are
accumulating as a function of time. In PC1D, photogeneration within each element is based on assuming
a separate exponential absorption characteristic for each wavelength, the recombination rate is assumed
to vary linearly with position across each element, and carrier accumulation is calculated assuming that
the excess electron concentration is a linear function of position. The time dependence of the
accumulation is calculated as a backward difference, assuming an exponential function of time unless the
excess has changed sign since the last time step, in which case a linear time dependence is used.

A similar derivation gives an expression for hole current, providing the third discrete equation needed at
each node.

Hole Current Transport:
1,(x,)=-ALY(-p AE)
%[ Z(B AE)e  —BE,00.)~6,(x.) —)Z(-B AE e —BE,(R) 0, () )
(A.17)
A.3 System Solving

The electron and hole currents at node & can each be calculated independently for the two elements that
adjoin at that node. Each carrier current should be continuous at the node except for interface
recombination and majority-carrier current that may be injected at that node from an external source.
Using the discrete expressions for carrier current developed in Section A.2, two equations at each
internal node £ result.

Hole Current Transport:

Page 101


http://www.processtext.com/abchlp.html

e[ Z(-B AL, ex pRE, -0,)0)~ Z(B AL, ex pRE, -0,)0) |

Axy
( )kl
) —Y(B AE,)
- _%[ Z(-B Aép)kexp—&(&p _¢p)k+1)_ Z(p Aép)kexﬁ&(&!’ _¢P)k) ]
Sy poag 2 B e
n,A, n, qnA, (A.18)

Electron Current Transport:

D[ 2 A8 ) e x BE, 000~ 2B AL ex BE, ) ]
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n, A, n, qnA, (A.19)

Egs. (A.18) and (A.19), combined with Eq. (A.8), provide three simultaneous non-linear equations at
each internal node. Added to these are three equations at each boundary that are based on (1) injected
current density, (2) surface recombination, and (3) surface electrostatic potential. The first two of these
boundary conditions are implemented using Egs. (A.18) and (A.19), with the expression for current that
extends beyond the boundaries of the device set to zero (ie. set LHS to zero at x=0). The electrostatic-
potential boundary condition either equates the volume charge density at the surface to its equilibrium
value (0 for a neutral surface), or equates the electric field at the surface to its equilibrium value. For M
elements, there are a total of 3(M+1) equations for 3(M+ 1) unknowns.

These non-linear equations are solved using Newton's method, which iteratively solves a sequence of
linearized approximations of the equations. A Jacobian matrix is generated using the derivatives of each
equation in terms of ¢n, y, and ¢p, each normalized by k7/g. The derivatives are calculated from
analytical expressions for all terms except the surface and bulk recombination, which are calculated
numerically based on a 1% change in the excess carrier densities. These expressions are such that the
equations for node & involve only values from nodes k-1, k, and k+1. The resulting matrix has a
numerical bandwidth of 11. The three equations are ordered so that the matrix will be diagonally
dominant, eliminating the need for time-consuming pivoting. The electron current continuity equation is
diagonal with ¢n, the hole current continuity equation is diagonal with ¢p, and the electrostatic equation
is diagonal with . A solution vector is constructed using the residual error from the 3(M+1) system
equations. The entries for a single node are shown in Eq. (A.20).
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where superscripts -, 0, and + correspond to values at nodes .-/, k, and k+1. The diagonal matrix
components are shown in bold characters.

The Jacobian matrix is inverted using LU decomposition. Multiplying the factored Jacobian matrix times
the solution vector generates a set of values for A¢gn, Ay, and Adp at each node. The electrostatic
potential at each node is then updated using the following function, which puts a clamp on the amount the
potential is allowed to change during a single iteration. The clamp value is supplied by the user. The
defaultis 5 kT / q.

Ay’ = Ay / (1+|Ay/clamp|) (A.21)

The changes in the two quasi-Fermi potentials at each node are also limited, in one of three ways
selected by the user. In Phi clamping, equation (A.21) is applied to each quasi-Fermi potential. In Psi
clamping, the separation between each quasi-Fermi potential and the electrostatic potential is monitored
and prevented from changing by more than the clamp value during each iteration, using equation (A.22).
Applying Both clamps usually gives the most reliable convergence, through there are exceptions.

AY = Ay + (Ad—Ay")/ (1+|(Ad— Ay')/ clamp|) (A.22)

At the end of each Newton iteration the maximum normalized update (prior to clamping) is determined.
The magnitude of this correction is displayed on the screen as a way of monitoring the convergence of
the solution. The solution continues until this maximum normalized correction error falls below the
user-supplied error limit, typically 1.0E-6.

For equilibrium solutions, the knowledge that /n = Ip = GL = R = ( atall x allows the semiconductor
equations to be reduced to a single equation in the single unknown, . Thus for equilibrium there are
only M+ 1 equations in M+ unknowns, and the numerical bandwidth is reduced to 3. The equations
are still quite non-linear, and the same iterative Newton method is applied. At the end of each iteration
v 1s updated, with the clamping function of Eq. (A.21) applied. The iterations continue until the
maximum change in By is less than the user-supplied normalized error limit.

A.4 Node Placement

The flexibility of PC1D is greatly enhanced by its ability to automatically place nodes where they are
needed most. This "renoding" takes place at various times as requested by the solution parameters.
After renoding, the error will usually increase for a few iterations, then converge rapidly toward zero.

The node placement algorithm used in PC1D does not guarantee a specific number of elements. Rather,
the user supplies an "Element Size Factor" which directly reflects the intrinsic accuracy of the solution.
For the same value of this factor, some problems may require many more elements than others. If more
than 500 elements are necessary to achieve the specified level of accuracy, PC1D will automatically
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increase the element size factor until the number of elements drops below 500. The default value for this
factor (o) is 0.5. For more accuracy, consider using a smaller value of o, like 0.25. Values greater
than 1.0 provide faster operation, but the solution accuracy will deteriorate.

The node placement algorithm starts with an initial set of elements and proceeds to scan them in order of

increasing x. For each element, PC1D chooses one of three options: (1) keep the element as it is, (2)

subdivide the element into up to 30 smaller elements, or (3) concatenate the element to the element on its

left. The determination of which option to take depends on several criteria. These criteria are based on

the fundamental assumptions in the numerical method and on producing visually pleasing graphs.

An element will be concatenated to the one on its left unless any of the following tests are true for the two

elements combined.

(1) The average volume charge density causes the electrostatic potential to deviate from linearity by an
excessive amount:

sz 1/2 kT
[P j va X1

% q (A.23)

(1) The majority-carrier doping concentration changes too rapidly:
| Aln(Nmayj)| > o (A.24)

(1) The width of the element is too large for its proximity to the surface (This is to ensure an adequate
number of small elements near the front or rear surface in case rapidly absorbed light is subsequently
applied):

AX > X. (A.25)
(1) The element consumes too large a fraction of the width of the region:
Ax > wreg/20. (A.26)

(1) The node that would be eliminated by concatenation is the interface between regions or an injection
point for the emitter, base, collector, or interface shunt contacts.

The element will be subdivided if either criterion (1) or (4) is true. The number of subelements created
will be equal to the ratio of the LHS to the RHS of the equation, with a maximum of 30 subelements
permitted.

After a new set of nodes has been selected, the values of the various solution variables at these nodes
are obtained by interpolating values from the previous set of nodes. For ND, NA, tno, and tpo, this
interpolation assumes that the logarithm of the parameters is linear between nodes; while for y, yeq, ¢n,
op, A, Vn, Vp, xn, xp, vsat, Et, &
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