%0 Journal Article %J Advanced Energy Materials %D 2016 %T Over 9% Efficient Kesterite Cu 2 ZnSnS 4 Solar Cell Fabricated by Using Zn 1- x Cd x S Buffer Layer %B Advanced Energy Materials %V 6 %P 1600046 %8 Jan-06-2016 %G eng %U http://doi.wiley.com/10.1002/aenm.201600046https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2Faenm.201600046 %N 12 %! Adv. Energy Mater. %R 10.1002/aenm.201600046 %0 Journal Article %J Progress in Photovoltaics: Research and Applications %D 2010 %T Solar cell efficiency tables (version 35) %A Martin A Green %A Keith Emery %A Yoshihiro Hishikawa %A Wilhelm Warta %K Conversion efficiency %K Energy conversion %K solar cells %K Solar energy %K Solar power generation %X

Consolidated tables showing an extensive listing of the highest independently confirmed efficiencies for solar cells and modules are presented. Guidelines for inclusion of results into these tables are outlined and new entries since July 2009 are reviewed. Copyright 2010 John Wiley Sons, Ltd.

%B Progress in Photovoltaics: Research and Applications %V 18 %P 144–150 %G eng %U http://dx.doi.org/10.1002/pip.974 %0 Journal Article %J Progress in Photovoltaics: Research and Applications %D 2009 %T The path to 25% silicon solar cell efficiency: History of silicon cell evolution %A Martin A Green %B Progress in Photovoltaics: Research and Applications %V 17 %P 183-189 %G eng %0 Journal Article %J Solar Energy Materials and Solar Cells %D 2008 %T Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients %A Martin A Green %K Absorption coefficient %K optical properties %K SILICON SOLAR CELLS %X An updated tabulation is presented of the optical properties of intrinsic silicon, of particular interest in solar cell calculations. Improved values of absorption coefficient, refractive index and extinction coefficient at {300&\#xa0;K} are tabulated over the 0.25–1.45&\#xa0;μm wavelength range at 0.01&\#xa0;μm intervals. The self-consistent tabulation was derived from {Kramers–Kronig} analysis of updated reflectance data deduced from the literature. The inclusion of normalised temperature coefficients allows extrapolation over a wide temperature range, with accuracy similar to that of available experimental data demonstrated over the {−24&\#xa0;°C} to {200&\#xa0;°C} range. %B Solar Energy Materials and Solar Cells %V 92 %P 1305–1310 %G eng %U http://www.sciencedirect.com/science/article/pii/S0927024808002158 %R 10.1016/j.solmat.2008.06.009 %0 Journal Article %D 2007 %T Applied Photovoltaics %A Wenham, S.R. %A Martin A Green %A Watt, M. E. %A R. Corkish %X
%I Earthscan %C London, UK %P 317 %@ 1-84407-401-3 %G eng %U http://www.amazon.com/Applied-Photovoltaics-Stuart-R-Wenham/dp/1844074013/ref=sr_1_1?ie=UTF8&s=books&qid=1279558328&sr=8-1 %0 Journal Article %J Solar Energy Materials and Solar Cells %D 2001 %T 24.5% efficiency PERT silicon solar cells on SEH MCZ substrates and cell performance on other SEH CZ and FZ substrates %A Zhao, J. %A Aihua Wang %A Martin A Green %B Solar Energy Materials and Solar Cells %V 66 %P 27 - 36 %G eng %R 10.1016/S0927-0248(00)00155-0 %0 Journal Article %J Solar Energy Materials and Solar Cells %D 2001 %T High performance light trapping textures for monocrystalline silicon solar cells %A Campbell, Patrick %A Martin A Green %X Two novel texture schemes for the front of a c-Si silicon wafer solar cell are presented. The “bipyramid” texture is of two inverted pyramids of similar sizes laid out in alternating order. The “patch” texture uses a checkerboard layout of blocks of parallel grooves, with the grooves of alternating blocks perpendicularly oriented to each other. We estimate that these textures, which almost fully trap light for the first six passes through the substrate, can deliver better optical performance than the standard inverted pyramid texture, especially in narrow-band applications. %B Solar Energy Materials and Solar Cells %V 65 %P 369 - 375 %8 Jan-01-2001 %G eng %N 1-4 %! Solar Energy Materials and Solar Cells %R 10.1016/S0927-0248(00)00115-X %0 Conference Proceedings %B 2nd World Conference and Exhibition on Photovoltaic Solar Energy Conversion %D 1998 %T 19.8% Efficient Multicrystalline Silicon Solar Cells with Honeycomb Textured Front Surface %A Zhao, J. %A Wang, A. %A Martin A Green %B 2nd World Conference and Exhibition on Photovoltaic Solar Energy Conversion %C Vienna, Austria %G eng %0 Journal Article %J Applied Physics Letters %D 1998 %T 19.8% efficient "honeycomb" textured multicrystalline and 24.4% monocrystalline silicon solar cells %A Jianhua Zhao %A Aihua Wang %A Martin A Green %A Francesca Ferrazza %K elemental semiconductors %K SILICON %K solar cells %K surface texture %B Applied Physics Letters %I AIP %V 73 %P 1991-1993 %G eng %U http://link.aip.org/link/?APL/73/1991/1 %R 10.1063/1.122345 %0 Journal Article %J Progress in Photovoltaics: Research and Applications %D 1997 %T 20,000 PERL silicon cells for the "1996 World Solar Challenge" solar car race %A Zhao, J. %A Wang, A. %A Yun, F. %A Zhang, G. %A Roche, D.M. %A Wenham, S.R. %A Martin A Green %B Progress in Photovoltaics: Research and Applications %V 5 %P 269–276 %G eng %0 Journal Article %J Progress in Photovoltaics: Research and Applications %D 1995 %T Optical properties of intrinsic silicon at 300 K %A Martin A Green %A Keevers, Mark J. %B Progress in Photovoltaics: Research and Applications %V 3 %P 189 - 192 %8 1995 %G eng %R 10.1002/pip.4670030303 %0 Journal Article %J Journal of Applied Physics %D 1994 %T Departures from the principle of superposition in silicon solar cells %A Robinson, S. J. %A Armin G Aberle %A Martin A Green %B Journal of Applied Physics %V 76 %P 7920 %8 1994 %G eng %R 10.1063/1.357902 %0 Conference Paper %B Proceedings of the 23rd IEEE Photovoltaic Specialists Conference %D 1993 %T A New Method for the Accurate Measurements of the Lumped Series Resistance of Solar Cells %A Armin G Aberle %A Wenham, S.R. %A Martin A Green %B Proceedings of the 23rd IEEE Photovoltaic Specialists Conference %C Louisville, KY %G eng %0 Book %D 1992 %T Solar Cells - Operating Principles, Technology and System Application %A Martin A Green %I University of NSW %C Kensington, Australia %G eng %0 Journal Article %J Journal of Applied Physics %D 1991 %T Improved value for the silicon intrinsic carrier concentration from 275 to 375 K %A A. B. Sproul %A Martin A Green %B Journal of Applied Physics %V 70 %P 846 %8 1991 %G eng %R 10.1063/1.349645 %0 Journal Article %J Journal of Applied Physics %D 1991 %T Improved value for the silicon intrinsic carrier concentration from 275 to 375 K %A A. B. Sproul %A Martin A Green %K CARRIER DENSITY %K IV CHARACTERISTIC %K JUNCTION DIODES %K MEDIUM TEMPERATURE %K MINORITY CARRIERS %K SANDIA LABORATORIES %K SILICON %K SILICON DIODES %K TEMPERATURE DEPENDENCE %B Journal of Applied Physics %I AIP %V 70 %P 846-854 %G eng %U http://link.aip.org/link/?JAP/70/846/1 %R 10.1063/1.349645 %0 Conference Proceedings %B 22nd IEEE PV Specialists Conference %D 1991 %T Improvements in Silicon Solar Cell Performance %A Zhao, J. %A Wang A. %A Dai, X. %A Martin A Green %A Wenham, S.R. %B 22nd IEEE PV Specialists Conference %P 399-402 %G eng %0 Book %D 1991 %T The Role of Photovoltaics in Reducing Greenhouse Gas Emissions %A Andrew W Blakers %A Martin A Green %A T. Leo %A H. Outhred %A B. Robins %I Australian Government Publishing Service %C Canberra %G eng %0 Conference Proceedings %B Twenty First IEEE Photovoltaic Specialists Conference %D 1990 %T 18% efficient polycrystalline silicon solar cells %A Narayanan, S. %A Zolper, J. %A Yun, F. %A Wenham, S.R. %A A. B. Sproul %A Chong,C.M. %A Martin A Green %B Twenty First IEEE Photovoltaic Specialists Conference %V 1 %P 678-680 %G eng %0 Journal Article %J Applied Physics Letters %D 1990 %T Improved value for the silicon intrinsic carrier concentration at 300 K %A A. B. Sproul %A Martin A Green %A Zhao, J. %B Applied Physics Letters %V 57 %P 255 %8 1990 %G eng %R 10.1063/1.103707 %0 Conference Proceedings %B 21st IEEE Photovoltaic Specialists Conference %D 1990 %T Photovoltaics: Coming of Age %A Martin A Green %X The history of photovoltaic development is reviewed. An outline of the potential of the technology as the author views it is given. The challenge to be met to reach this potential is to develop high-efficiency technologies which can be produced at low cost. Three factors suggest this is possible. The first is the latent efficiency still to be recovered with even the most highly developed cell technologies. The second is the recent progress with tandem cells, which suggests that most of the 30-40% efficiency advantage over single-junction devices will eventually be realized. Tandem cells are likely to offer cost advantages in very high volume production. The third is the pyramid of possibilities, the wide range of semiconductors which still have to be evaluated for their photovoltaic potential. %B 21st IEEE Photovoltaic Specialists Conference %C Orlando, USA %P 1-8 %8 05/1990 %G eng %U http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=111582 %R 10.1109/PVSC.1990.111582 %0 Journal Article %J Applied Physics Letters %D 1989 %T 16.7% efficient, laser textured, buried contact polycrystalline silicon solar cell %A John C. Zolper %A Srinivasamohan Narayanan %A Stuart R. Wenham %A Martin A Green %B Applied Physics Letters %V 55 %P 2363 %G eng %U http://apl.aip.org/applab/v55/i22/p2363_s1 %R 10.1063/1.102019 %0 Generic %D 1988 %T Buried contact solar cell %A Stuart R. Wenham %A Martin A Green %8 February %G eng %U http://www.freepatentsonline.com/4726850.html %0 Journal Article %J Journal of Applied Physics %D 1987 %T Light trapping properties of pyramidally textured surfaces %A Campbell, Patrick %A Martin A Green %B Journal of Applied Physics %V 62 %P 243 %8 Jan-01-1987 %G eng %N 1 %! J. Appl. Phys. %R 10.1063/1.339189 %0 Journal Article %J Solar Cells %D 1982 %T Accuracy of Analytical Expressions for Solar Cell Fill Factors %A Martin A Green %B Solar Cells %V 7 %P 337-340 %G eng %0 Journal Article %D 1982 %T Solar Cells: Operating Principles, Technology and System Applications %A Martin A Green %X
%I Prentice-Hall %P 274 %@ 0-85823-580-3 %G eng %0 Journal Article %J Solid-State Electronics %D 1981 %T Solar cell fill factors: General graph and empirical expressions %A Martin A Green %B Solid-State Electronics %V 24 %P 788 - 789 %G eng %R 10.1016/0038-1101(81)90062-9