Biblio

Export 290 results:
[ Author(Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Z
P. Zwolenski, Tobola, J., and Kaprzyk, S., A Theoretical Search for Efficient Dopants in Mg2X (X = Si, Ge, Sn) Thermoelectric Materials, Journal of Electronic Materials, vol. 40, no. 5, pp. 889 - 897, 2011.
J. C. Zolper, Narayanan, S., Wenham, S. R., and Green, M. A., 16.7% efficient, laser textured, buried contact polycrystalline silicon solar cell, Applied Physics Letters, vol. 55, p. 2363, 1989.
J. Zhao, Wang, A., Green, M. A., and Ferrazza, F., 19.8% efficient "honeycomb" textured multicrystalline and 24.4% monocrystalline silicon solar cells, Applied Physics Letters, vol. 73, pp. 1991-1993, 1998.
J. Zhao et al., 20,000 PERL silicon cells for the "1996 World Solar Challenge" solar car race, Progress in Photovoltaics: Research and Applications, vol. 5, pp. 269–276, 1997.
J. Zhao, A., W., Dai, X., Green, M. A., and Wenham, S. R., Improvements in Silicon Solar Cell Performance, 22nd IEEE PV Specialists Conference. pp. 399-402, 1991.
J. Zhao, Wang, A., and Green, M. A., 24.5% efficiency PERT silicon solar cells on SEH MCZ substrates and cell performance on other SEH CZ and FZ substrates, Solar Energy Materials and Solar Cells, vol. 66, pp. 27 - 36, 2001.
J. Zhao, Wang, A., and Green, M. A., 19.8% Efficient Multicrystalline Silicon Solar Cells with Honeycomb Textured Front Surface, 2nd World Conference and Exhibition on Photovoltaic Solar Energy Conversion. Vienna, Austria, 1998.
E. Zerubavel, The Standardization of Time: A Sociohistorical Perspective, American Journal of Sociology, vol. 88, pp. 1-23, 1982.
W
R. W. G. Wyckoff, Crystal Structures 1, 2ndnd ed., vol. 1. New York, New York: Interscience Publishers, 1963.
P. Würfel, Physics of Solar Cells, p. 183, 2009.
W. A. Wooster, Physical properties and atomic arrangements in crystals, Reports on Progress in Physics, vol. 16, no. 1, pp. 62 - 82, 2002.
M. Wolf and Rauschenbach, H., Series Resistance Effects on Solar Cell Measurements, Advanced Energy Conversion, vol. 3, 1963.
M. Wolf, Historical Development of Solar Cells. IEEE Press, 1976.
J. H. Wohlgemuth and Narayanan, S., Buried contact concentrator solar cells, Twenty Second IEEE Photovoltaic Specialists Conference, vol. 1. pp. 273-277, 1991.
G. Willeke, Nussbaumer, H., Bender, H., and Bucher, E., A simple and effective light trapping technique for polycrystalline silicon solar cells, Solar Energy Materials and Solar Cells, vol. 26, pp. 345 - 356, 1992.
S. M. Whittingham and Thompson, A. H., Intercalation and lattice expansion in titanium disulfide, The Journal of Chemical Physics, vol. 62, no. 4, p. 1588, 1975.
S. R. Wenham and Green, M. A., Buried contact solar cell. 1988.
S. R. Wenham, Green, M. A., Watt, M. E., and Corkish, R., Applied Photovoltaics, p. 317, 2007.
H. J. Wenger, Schaefer, J., Rosenthal, A., Hammond, B., and Schlueter, L., Decline of the Carrisa Plains PV Power Plant: The Impact of Concentrating Sunlight on Flat Plates, 22nd IEEE Photovoltaic Specialists Conference. Las Vegas, USA, pp. 586-592, 1991.
S. - H. Wei, Zhang, S. B., and Zunger, A., Effects of Na on the electrical and structural properties of CuInSe2, Journal of Applied Physics, vol. 85, pp. 7214–7218, 1999.
W. Wang et al., Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency, Advanced Energy Materials, vol. 4, 2014.

Pages