Biblio

Export 293 results:
Author [ Title(Desc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
G
P. J. Cousins et al., Gen III: Improved Performance at Lower Cost, in 35th IEEE Photovoltaic Specialists Conference, Honolulu, Hawaii, 2010.
M. J. Kerr and Cuevas, A., General parameterization of Auger recombination in crystalline silicon, Journal of Applied Physics, vol. 91, pp. 2473-2480, 2002.
H. Nagel, Berge, C., and Aberle, A. G., Generalized analysis of quasi-steady-state and quasi-transient measurements of carrier lifetimes in semiconductors, Journal of Applied Physics, vol. 86, pp. 6218-6221, 1999.
M. J. Kerr, Cuevas, A., and Sinton, R. A., Generalized analysis of quasi-steady-state and transient decay open circuit voltage measurements, Journal of Applied Physics, vol. 91, p. 399, 2002.
C. J. Hages, Carter, N. J., and Agrawal, R., Generalized quantum efficiency analysis for non-ideal solar cells: Case of Cu 2 ZnSnSe 4, Journal of Applied Physics, vol. 119, no. 1, p. 014505, 2016.
A. Einstein, Generation and transformation of light, Annalen der Physik, vol. 17, 1905.
NASA, GISS Surface Temperature Analysis, 2010.
J. Hansen, Global temperature change, Proceedings of the National Academy of Sciences, vol. 103, pp. 14288 - 14293, 2006.
L. Al Juhaiman, Scoles, L., Kingston, D., Patarachao, B., Wang, D., and Bensebaa, F., Green synthesis of tunable Cu(In1−xGax)Se2 nanoparticles using non-organic solvents, Green Chemistry, vol. 12, no. 7, p. 1248, 2010.
H
E. M. Logothetis, Kaiser, W. J., Kukkonen, C. A., Faile, S. P., Colella, R., and Gambold, J., Hall coefficient and reflectivity evidence that TiS 2 is a semiconductor, Journal of Physics C: Solid State Physics, vol. 12, p. L521, 1979.
E. M. Logothetis, Kaiser, W. J., Kukkonen, C. A., Faile, S. P., Colella, R., and Gambold, J., Hall coefficient and reflectivity evidence that TiS 2 is a semiconductor, Journal of Physics C: Solid State Physics, vol. 12, no. 13, pp. L521 - L526, 1979.
A. Luque and Hegedus, S., Handbook of Photovoltaic Science and Engineering, p. 1117, 2003.
K. Ghosh, Heterojunction and Nanostructured Photovoltaic Device: Theory and Experiment, Arizona State University, 2011.
T. Magorian Friedlmeier, Wieser, N., Walter, T., Dittrich, H., and Schock, H. W., Heterojunctions based on Cu2ZnSnS4 and Cu2ZnSnSe4 thin films, in 14th European PVSEC, 1997.
B. Dale and Rudenberg, H. G., High efficiency silicon solar cells, in Proceedings of the 14th Annual Power Sources Conference, 1960, p. 22.
M. Aven, High Electron Mobility in Zinc Selenide Through Low-Temperature Annealing, Journal of Applied Physics, vol. 42, no. 3, p. 1204, 1971.
P. Campbell and Green, M. A., High performance light trapping textures for monocrystalline silicon solar cells, Solar Energy Materials and Solar Cells, vol. 65, no. 1-4, pp. 369 - 375, 2001.
M. Powalla et al., High-efficiency Cu(In,Ga)Se2 cells and modules, Solar energy materials and solar cells, vol. 119, pp. 51–58, 2013.
M. Wolf, Historical Development of Solar Cells. IEEE Press, 1976.
I
D. S. Ruby, Yang, P., Zaidi, S., Brueck, S., Roy, M., and Narayanan, S., Improved Performance of Self-Aligned, Selective-Emitter Silicon Solar Cells, 2nd World Conference and Exhibition on Photovoltaic Solar Energy Conversion. Vienna, Austria, 1998.

Pages